JCMT BISTRO Observations: Magnetic Field Morphology of Bubbles Associated with NGC 6334

We study the Hii regions associated with the NGC 6334 molecular cloud observed in the submillimeter and taken as part of the B-fields In STar-forming Region Observations Survey. In particular, we investigate the polarization patterns and magnetic field morphologies associated with these Hii regions. Through polarization pattern and pressure calculation analyses, several of these bubbles indicate that the gas and magnetic field lines have been pushed away from the bubble, toward an almost tangential (to the bubble) magnetic field morphology. In the densest part of NGC 6334, where the magnetic field morphology is similar to an hourglass, the polarization observations do not exhibit observable impact from Hii regions. We detect two nested radial polarization patterns in a bubble to the south of NGC 6334 that correspond to the previously observed bipolar structure in this bubble. Finally, using the results of this study, we present steps (incorporating computer vision; circular Hough transform) that can be used in future studies to identify bubbles that have physically impacted magnetic field lines.

Lei Zhu | A. Scaife | P. Koch | A. Whitworth | N. Peretto | G. Fuller | H. Chen | T. Onaka | Sang-Sung Lee | D. Byun | C. Hull | D. Johnstone | P. Bastien | S. Viti | Jongsoo Kim | G. Savini | B. Matthews | Di Li | P. Friberg | M. Seta | J. Kwon | T. Nagata | K. Kawabata | S. Eyres | S. Falle | J. Greaves | G. Moriarty-Schieven | T. Hasegawa | D. Ward-Thompson | L. Fissel | J. Hatchell | A. Chrysostomou | J. Fiege | R. Friesen | S. Graves | M. Houde | J. Kirk | J. Richer | K. Lacaille | C. Dowell | A. Kataoka | M. Rawlings | H. Parsons | M. Redman | L. Qian | K. Qiu | T. Ching | Jinghua Yuan | A. Rigby | Jianjun Zhou | Xindi Tang | Da-lei Li | G. Park | Miju Kang | Il-Gyo Jeong | H. Nakanishi | Jeong-Eun Lee | Kee-Tae Kim | Hongchi Wang | Zhiwei Chen | Tie Liu | Ji-hyun Kang | S. Inutsuka | Minho Choi | Sung-ju Kang | H. Yoo | D. Berry | K. Pattle | T. Pyo | M. Griffin | F. Nakamura | V. Konyves | D. Arzoumanian | M. Tahani | Guoyin Zhang | R. Rao | Junhao Liu | Y. Doi | J. Robitaille | Hua-b. Li | Sheng-Yuan Liu | F. Kirchschlager | I. De Looze | A. Soam | J. di Francesco | Gwanjeong Kim | S. Mairs | Shinyoung Kim | W. Kwon | E. Chung | H. Duan | P. Diep | S. Hayashi | T. Hoang | M. Matsumura | Yapeng Zhang | S. Sadavoy | K. Tomisaka | Y. Tsukamoto | Hsi-Wei Yen | N. Ohashi | K. Iwasaki | Y. Shimajiri | Chin-Fei Lee | H. Shinnaga | L. Fanciullo | M. C. Chen | S. Coudé | T. Gledhill | F. Poidevin | Mi-Ryang Kim | R. Furuya | C. Eswaraiah | K. Kim | A. Lyo | B. Retter | I. Han | T. Hoang | Hyeseung Lee | Motohide Tamura | C. Law | T. Zenko | Masato I. N. Kobayashi | E. Franzmann | Q. Gu | Yoshihiro Kanamori | H. Saito | J. Hwang | T. Kusune | Yong-Hee Lee | Changwon Lee | V. J. M. Le Gouellec | Yunhee Choi | Jia-Wei Wang | S. Lai | Hongli Liu | Jungyeon Cho | Chuan-peng Zhang | Tsuyoshi Inoue | W. Chen | F. Kemper | S. van Loo | Philippe Andr'e | H. Yun | Ya-wen Tang | Ramprasad Rao | Takayoshi Kusune | Chang Won Lee | Geumsook Park

[1]  M. Tahani Three-dimensional magnetic fields of molecular clouds , 2022, Frontiers in Astronomy and Space Sciences.

[2]  H. Yoo,et al.  Evolution of the Hub-filament Structures in IC 5146 in the Context of the Energy Balance of Gravity, Turbulence, and Magnetic Field , 2022, The Astronomical Journal.

[3]  N. Schneider,et al.  The SOFIA FEEDBACK Legacy Survey Dynamics and Mass Ejection in the Bipolar H ii Region RCW 36 , 2022, The Astrophysical Journal.

[4]  R. Sefako,et al.  The Role of Magnetic Fields in Triggered Star Formation of RCW 120 , 2022, Research in Astronomy and Astrophysics.

[5]  R. Plume,et al.  Orion A's complete 3D magnetic field morphology , 2022, Astronomy & Astrophysics.

[6]  R. Plume,et al.  3D magnetic-field morphology of the Perseus molecular cloud , 2022, Astronomy & Astrophysics.

[7]  Qizhou Zhang,et al.  Magnetic Fields in Massive Star-forming Regions (MagMaR). II. Tomography through Dust and Molecular Line Polarization in NGC 6334I(N) , 2021, The Astrophysical Journal.

[8]  Dieu D. Nguyen,et al.  Studying Magnetic Fields and Dust in M17 Using Polarized Thermal Dust Emission Observed by SOFIA/HAWC+ , 2021, The Astrophysical Journal.

[9]  National Radio Astronomy Observatory,et al.  Magnetic Fields in Massive Star-forming Regions (MagMaR). I. Linear Polarized Imaging of the Ultracompact H ii Region G5.89–0.39 , 2021, The Astrophysical Journal.

[10]  P. Koch,et al.  The JCMT BISTRO-2 Survey: The Magnetic Field in the Center of the Rosette Molecular Cloud , 2021, The Astrophysical Journal.

[11]  T. Ray,et al.  Magnetic Fields and Star Formation around H II Regions: The S235 Complex , 2021, The Astrophysical Journal.

[12]  C. W. Lee,et al.  Dust polarized emission observations of NGC 6334 , 2020, 2012.13060.

[13]  S. Inutsuka,et al.  Classification of Filament Formation Mechanisms in Magnetized Molecular Clouds , 2020, 2012.02205.

[14]  M. Tamura,et al.  JCMT POL-2 and BISTRO Survey Observations of Magnetic Fields in the L1689 Molecular Cloud , 2020, 2011.09765.

[15]  H. Yamamoto,et al.  Formation of the Musca filament: evidence for asymmetries in the accretion flow due to a cloud–cloud collision , 2020, Astronomy & Astrophysics.

[16]  Heidelberg,et al.  FEEDBACK: a SOFIA Legacy Program to Study Stellar Feedback in Regions of Massive Star Formation , 2020, Publications of the Astronomical Society of the Pacific.

[17]  Y. Fukui,et al.  Cloud–cloud collisions and triggered star formation , 2020, 2009.05077.

[18]  G. Busquet Magnetic fields going with the flow , 2020, Nature Astronomy.

[19]  S. Reissl,et al.  Magnetized filamentary gas flows feeding the young embedded cluster in Serpens South , 2020, Nature Astronomy.

[20]  A. Gusdorf,et al.  Understanding Polarized Dust Emission from ρ Ophiuchi A in Light of Grain Alignment and Disruption by Radiative Torques , 2020, 2007.10621.

[21]  Lei Zhu,et al.  The JCMT BISTRO Survey: Magnetic Fields Associated with a Network of Filaments in NGC 1333 , 2020, The Astrophysical Journal.

[22]  N. Maxted,et al.  Triggered high-mass star formation in the H iiregion W 28 A2: A cloud–cloud collision scenario , 2020, 2005.07933.

[23]  Manash R. Samal,et al.  Unveiling the Importance of Magnetic Fields in the Evolution of Dense Clumps Formed at the Waist of Bipolar H ii Regions: A Case Study of Sh 2-201 with JCMT SCUBA-2/POL-2 , 2019, The Astrophysical Journal.

[24]  J. D. Soler,et al.  Could bow-shaped magnetic morphologies surround filamentary molecular clouds? , 2019, Astronomy & Astrophysics.

[25]  H. Liu,et al.  Physical properties of the star-forming clusters in NGC 6334 , 2019, Astronomy & Astrophysics.

[26]  Jungyeon Cho,et al.  Physical Model of Dust Polarization by Radiative Torque Alignment and Disruption and Implications for Grain Internal Structures , 2019, The Astrophysical Journal.

[27]  P. Palmeirim,et al.  Probing fragmentation and velocity sub-structure in the massive NGC 6334 filament with ALMA , 2019, Astronomy & Astrophysics.

[28]  T. Onaka,et al.  JCMT BISTRO Survey Observations of the Ophiuchus Molecular Cloud: Dust Grain Alignment Properties Inferred Using a Ricean Noise Model , 2019, The Astrophysical Journal.

[29]  P. Persi High Mass Star Formation : A Review , 2019, Proceedings of Frontier Research in Astrophysics – III — PoS(FRAPWS2018).

[30]  L. Fissel,et al.  Submillimeter and Far-Infrared Polarimetric Observations of Magnetic Fields in Star-Forming Regions , 2019, Front. Astron. Space Sci..

[31]  C. Federrath,et al.  The Role of Magnetic Fields in Setting the Star Formation Rate and the Initial Mass Function , 2019, Front. Astron. Space Sci..

[32]  L. Tram,et al.  A New Mechanism of Dust Destruction by Massive Stars, Supernovae, and Kilonovae: Rotational Disruption by Radiative Torques , 2018, 1810.05557.

[33]  S. Offner,et al.  Turbulent action at a distance due to stellar feedback in magnetized clouds , 2018, Nature Astronomy.

[34]  K. Tachihara,et al.  Molecular filament formation and filament–cloud interaction: Hints from Nobeyama 45 m telescope observations , 2018, Publications of the Astronomical Society of Japan.

[35]  Tetsuo Hasegawa,et al.  First Observations of the Magnetic Field inside the Pillars of Creation: Results from the BISTRO Survey , 2018, The Astrophysical Journal.

[36]  P. Hennebelle,et al.  The formation of massive molecular filaments and massive stars triggered by a magnetohydrodynamic shock wave , 2018 .

[37]  L. V. Tóth,et al.  A Holistic Perspective on the Dynamics of G035.39-00.33: The Interplay between Gas and Magnetic Fields , 2018, The Astrophysical Journal.

[38]  M. Tahani,et al.  Helical magnetic fields in molecular clouds? , 2018, Astronomy & Astrophysics.

[39]  Kee-Tae Kim,et al.  Magnetic fields in multiple bright-rimmed clouds in different directions of H II region IC 1396 , 2018, 1802.07438.

[40]  D. Ojha,et al.  The Embedded Ring-like Feature and Star Formation Activities in G35.673-00.847 , 2018, 1801.07364.

[41]  R. Indebetouw,et al.  The Extraordinary Outburst in the Massive Protostellar System NGC 6334I-MM1: Emergence of Strong 6.7 GHz Methanol Masers , 2018, 1801.02141.

[42]  D. Balser,et al.  A Green Bank Telescope Survey of Large Galactic H ii Regions , 2017, 1710.07397.

[43]  R. Klessen,et al.  Spectral shifting strongly constrains molecular cloud disruption by radiation pressure on dust , 2017, 1710.02854.

[44]  M. Tamura,et al.  Understanding the Links among the Magnetic Fields, Filament, Bipolar Bubble, and Star Formation in RCW 57A Using NIR Polarimetry , 2017, 1710.01185.

[45]  Y. Fukui,et al.  Molecular clouds in the NGC 6334 and NGC 6357 region: Evidence for a 100 pc-scale cloud-cloud collision triggering the Galactic mini-starbursts , 2017, 1706.05771.

[46]  Saeko S. Hayashi,et al.  First Results from BISTRO: A SCUBA-2 Polarimeter Survey of the Gould Belt , 2017, 1704.08552.

[47]  M. Tamura,et al.  A Curved Magnetic Field in the Ring-like Shell of Bubble N4 , 2017, 1703.02649.

[48]  P. Hennebelle,et al.  The role of magnetic fields in the structure and interaction of supershells , 2017, 1701.03696.

[49]  B. Andersson,et al.  Magnetic field structure of IC 63 and IC 59 associated with H II region Sh 185 , 2016, 1611.02820.

[50]  Giorgio Savini,et al.  POL-2: a polarimeter for the James-Clerk-Maxwell telescope , 2016, Astronomical Telescopes + Instrumentation.

[51]  E. Doumayrou,et al.  Characterizing filaments in regions of high-mass star formation: High-resolution submilimeter imaging of the massive star-forming complex NGC 6334 with ArTeMiS , 2016, 1605.07434.

[52]  Manash R. Samal,et al.  NGC 6334 and NGC 6357: Hα kinematics and the nature of the H II regions , 2016 .

[53]  V. Cunningham,et al.  FINDING DISTANT GALACTIC H ii REGIONS , 2015, 1510.07347.

[54]  C. Pinte,et al.  Nonazimuthal linear polarization in protoplanetary disks , 2015, 1509.06745.

[55]  John E. Vaillancourt,et al.  Interstellar Dust Grain Alignment , 2015 .

[56]  R. Klein,et al.  Magnetized interstellar molecular clouds - I. Comparison between simulations and Zeeman observations , 2015, 1506.08228.

[57]  S. Inutsuka,et al.  The Formation and Destruction of Molecular Clouds and Galactic Star Formation , 2015, Proceedings of the International Astronomical Union.

[58]  Christoph Federrath,et al.  Inefficient star formation through turbulence, magnetic fields and feedback , 2015, 1504.03690.

[59]  L. Montier,et al.  Polarization measurements analysis II. Best estimators of polarization fraction and angle , 2014, 1407.0178.

[60]  Emmanuelle Gouillart,et al.  scikit-image: image processing in Python , 2014, PeerJ.

[61]  K. Menten,et al.  Trigonometric parallaxes of star-forming regions in the Sagittarius spiral arm , 2014, 1404.4683.

[62]  V. Cunningham,et al.  THE WISE CATALOG OF GALACTIC H ii REGIONS , 2013, 1312.6202.

[63]  S. Plaszczynski,et al.  A novel estimator of the polarization amplitude from normally distributed Stokes parameters , 2013, 1312.0437.

[64]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[65]  P. Schilke,et al.  The global velocity field of the filament in NGC 6334 , 2013 .

[66]  P. A. R. Ade,et al.  SCUBA-2: the 10 000 pixel bolometer camera on the James Clerk Maxwell Telescope , 2013, 1301.3650.

[67]  M. Tamura,et al.  Near-Infrared Imaging Polarization Study of M 17 , 2012 .

[68]  N. Schneider,et al.  Three-dimensional simulations of globule and pillar formation around HII regions: turbulence and shock curvature , 2012, 1207.6400.

[69]  S. Bontemps,et al.  Statistical study of OB stars in NGC 6334 and NGC 6357 , 2012 .

[70]  S. Kendrew,et al.  The Milky Way Project First Data Release: a bubblier Galactic disc , 2012, 1201.6357.

[71]  M. Thompson,et al.  The statistics of triggered star formation: An overdensity of massive YSOs around Spitzer bubbles , 2011, 1111.0972.

[72]  D. Balser,et al.  THE GREEN BANK TELESCOPE H ii REGION DISCOVERY SURVEY. II. THE SOURCE CATALOG , 2011, 1103.5085.

[73]  D. Astronomy,et al.  Radiation-magnetohydrodynamic simulations of H ii regions and their associated PDRs in turbulent molecular clouds , 2011, 1101.5510.

[74]  S. Bontemps,et al.  The earliest phases of high-mass star formation: the NGC 6334-NGC 6357 complex , 2010 .

[75]  S. Molinari,et al.  Star formation triggered by H II regions in our Galaxy First results for N49 from the Herschel infrared survey of the Galactic plane , 2010, 1005.1591.

[76]  M. Sauvage,et al.  Star formation triggered by the Galactic HII region RCW 120: First results from the Herschel Space Observatory , 2010, 1005.1615.

[77]  G. Mellema,et al.  Radiation-magnetohydrodynamic simulations of the photoionization of magnetized globules , 2008, 0810.1531.

[78]  A. Lazarian,et al.  Radiative torques: analytical model and basic properties , 2007, 0707.0886.

[79]  A. Lazarian,et al.  Tracing Magnetic Fields with Aligned Grains , 2007, 0707.0858.

[80]  Zhi-Yun Li,et al.  Protostellar Turbulence Driven by Collimated Outflows , 2007, astro-ph/0703152.

[81]  Brazil,et al.  Polarimetry toward the IRAS Vela Shell. II. Extinction and Magnetic Fields , 2007, astro-ph/0702550.

[82]  J. Stone,et al.  Magnetohydrodynamic Evolution of H II Regions in Molecular Clouds: Simulation Methodology, Tests, and Uniform Media , 2006, astro-ph/0606539.

[83]  Fortunat Joos,et al.  Limb polarization of Uranus and Neptune - I. Imaging polarimetry and comparison with analytic models , 2006 .

[84]  D. Balser,et al.  Radio Recombination Lines in Galactic H II Regions , 2006, astro-ph/0603133.

[85]  John E. Vaillancourt,et al.  Placing Confidence Limits on Polarization Measurements , 2006, astro-ph/0603110.

[86]  A. Zavagno,et al.  Triggered massive-star formation on the borders of Galactic H II regions I. A search for "collect and collapse" candidates , 2004, astro-ph/0412602.

[87]  R. Crutcher,et al.  VLA OH and H I Zeeman Observations of the NGC 6334 Complex , 1999, astro-ph/9912197.

[88]  C. Heiles A Holistic View of the Magnetic Field in the Eridanus/Orion Region , 1997 .

[89]  J. Weingartner,et al.  Radiative Torques on Interstellar Grains. II. Grain Alignment , 1996, astro-ph/9611149.

[90]  K. Kraemer,et al.  Molecular Gas in the NGC 6334 Star Formation Region , 1996 .

[91]  Donald P. Cox,et al.  Galactic hydrostatic equilibrium with magnetic tension and cosmic-ray diffusion , 1990 .

[92]  K. Menten,et al.  Observations of various methanol maser transitions toward the NGC 6334 region , 1989 .

[93]  J. Moran,et al.  The bipolar H II region NGC 6334A , 1988 .

[94]  H. E. Matthews,et al.  Detection of strong methanol masers towards galactic H II regions , 1987, Nature.

[95]  G. Fazio,et al.  Multiband far-infrared observations of the NGC 6334 complex , 1986 .

[96]  I. Gatley,et al.  Infrared observations of OB star formation in NGC 6334 , 1983 .

[97]  J. Moran,et al.  Radio sources in NGC 6334 , 1982 .

[98]  J. Moran,et al.  Water-vapor masers and star formation in NGC 6334 , 1979 .

[99]  E. Wright,et al.  Evidence for a variable far-infrared source in NGC 6334 , 1979 .

[100]  J. Wardle,et al.  The linear polarization of quasi-stellar radio sources at 3.71 and 11.1 centimeters. , 1974 .

[101]  Enrico Fermi,et al.  Magnetic fields in spiral arms , 1953 .

[102]  J. Greenstein,et al.  The Polarization of Starlight by Aligned Dust Grains. , 1951 .

[103]  M. Roth,et al.  The new star forming site NGC 6334 IV (MM3) , 2009 .

[104]  D. Osterbrock,et al.  Astrophysics of Gaseous Nebulae and Active Galactic Nuclei , 1989 .

[105]  P. Mcgregor,et al.  The centers of star formation in NGC 6334 and their stellar mass distributions , 1989 .