Task alters category representations in prefrontal but not high-level visual cortex

ABSTRACT A central question in neuroscience is how cognitive tasks affect category representations across the human brain. Regions in lateral occipito‐temporal cortex (LOTC), ventral temporal cortex (VTC), and ventro‐lateral prefrontal cortex (VLFPC) constitute the extended “what” pathway, which is considered instrumental for visual category processing. However, it is unknown (1) whether distributed responses across LOTC, VTC, and VLPFC explicitly represent category, task, or some combination of both, and (2) in what way representations across these subdivisions of the extended ‘what’ pathway may differ. To fill these gaps in knowledge, we scanned 12 participants using fMRI to test the effect of category and task on distributed responses across LOTC, VTC, and VLPFC. Results reveal that task and category modulate responses in both high‐level visual regions, as well as prefrontal cortex. However, we found fundamentally different types of representations across the brain. Distributed responses in high‐level visual regions are more strongly driven by category than task, and exhibit task‐independent category representations. In contrast, distributed responses in prefrontal cortex are more strongly driven by task than category, and contain task‐dependent category representations. Together, these findings of differential representations across the brain support a new idea that LOTC and VTC maintain stable category representations allowing efficient processing of visual information, while prefrontal cortex contains flexible representations in which category information may emerge only when relevant to the task.

[1]  Doris Y. Tsao,et al.  Single-Unit Recordings in the Macaque Face Patch System Reveal Limitations of fMRI MVPA , 2015, The Journal of Neuroscience.

[2]  David D. Cox,et al.  Untangling invariant object recognition , 2007, Trends in Cognitive Sciences.

[3]  N. Kanwisher,et al.  How Distributed Is Visual Category Information in Human Occipito-Temporal Cortex? An fMRI Study , 2002, Neuron.

[4]  H. Komatsu,et al.  Effects of task demands on the responses of color-selective neurons in the inferior temporal cortex , 2007, Nature Neuroscience.

[5]  Li Fei-Fei,et al.  Neural mechanisms of rapid natural scene categorization in human visual cortex , 2009, Nature.

[6]  K. Grill-Spector,et al.  Neural representations of faces and limbs neighbor in human high-level visual cortex: evidence for a new organization principle , 2011, Psychological Research.

[7]  M. Catani,et al.  Monkey to human comparative anatomy of the frontal lobe association tracts , 2012, Cortex.

[8]  I. Gauthier,et al.  Expertise for cars and birds recruits brain areas involved in face recognition , 2000, Nature Neuroscience.

[9]  N. Kanwisher,et al.  A stable topography of selectivity for unfamiliar shape classes in monkey inferior temporal cortex. , 2008, Cerebral cortex.

[10]  Doris Y. Tsao,et al.  Comparing face patch systems in macaques and humans , 2008, Proceedings of the National Academy of Sciences.

[11]  Keiji Tanaka,et al.  Object category structure in response patterns of neuronal population in monkey inferior temporal cortex. , 2007, Journal of neurophysiology.

[12]  K. Johnston,et al.  Monkey Dorsolateral Prefrontal Cortex Sends Task-Selective Signals Directly to the Superior Colliculus , 2006, The Journal of Neuroscience.

[13]  Kalanit Grill-Spector,et al.  Not one extrastriate body area: Using anatomical landmarks, hMT+, and visual field maps to parcellate limb-selective activations in human lateral occipitotemporal cortex , 2011, NeuroImage.

[14]  Russell A. Epstein,et al.  Constructing scenes from objects in human occipitotemporal cortex , 2011, Nature Neuroscience.

[15]  M. Goodale,et al.  Separate visual pathways for perception and action , 1992, Trends in Neurosciences.

[16]  Dwight J. Kravitz,et al.  The ventral visual pathway: an expanded neural framework for the processing of object quality , 2013, Trends in Cognitive Sciences.

[17]  Dwight J. Kravitz,et al.  Real-World Scene Representations in High-Level Visual Cortex: It's the Spaces More Than the Places , 2011, The Journal of Neuroscience.

[18]  Kalanit Grill-Spector,et al.  Sparsely-distributed organization of face and limb activations in human ventral temporal cortex , 2010, NeuroImage.

[19]  David J. Freedman,et al.  Categorical representation of visual stimuli in the primate prefrontal cortex. , 2001, Science.

[20]  David J. Freedman,et al.  A Comparison of Primate Prefrontal and Inferior Temporal Cortices during Visual Categorization , 2003, The Journal of Neuroscience.

[21]  Daniel Baldauf,et al.  Neural mechanisms of object-based attention , 2014 .

[22]  S. Thorpe,et al.  Speed of processing in the human visual system , 1996, Nature.

[23]  H. Duffau,et al.  The functional architecture of the left posterior and lateral prefrontal cortex in humans. , 2008, Cerebral Cortex.

[24]  Nancy Kanwisher,et al.  A cortical representation of the local visual environment , 1998, Nature.

[25]  Alexander G. Huth,et al.  Attention During Natural Vision Warps Semantic Representation Across the Human Brain , 2013, Nature Neuroscience.

[26]  David J. Freedman,et al.  Task Dependence of Visual and Category Representations in Prefrontal and Inferior Temporal Cortices , 2014, The Journal of Neuroscience.

[27]  Ben M. Crittenden,et al.  Task Difficulty Manipulation Reveals Multiple Demand Activity but no Frontal Lobe Hierarchy , 2012, Cerebral cortex.

[28]  Takashi Namba,et al.  Clustering, migration, and neurite formation of neural precursor cells in the adult rat hippocampus , 2007, The Journal of comparative neurology.

[29]  Kalanit Grill-Spector,et al.  Identifying Distributed Object Representations in Human Extrastriate Visual Cortex , 2005, NIPS.

[30]  Lizabeth M. Romanski,et al.  Convergence of Auditory, Visual, and Somatosensory Information in Ventral Prefrontal Cortex , 2012 .

[31]  J. Duncan The multiple-demand (MD) system of the primate brain: mental programs for intelligent behaviour , 2010, Trends in Cognitive Sciences.

[32]  M. Riesenhuber,et al.  Evaluation of a Shape-Based Model of Human Face Discrimination Using fMRI and Behavioral Techniques , 2006, Neuron.

[33]  S. Kastner,et al.  Topographic maps in human frontal and parietal cortex , 2009, Trends in Cognitive Sciences.

[34]  Keiji Tanaka,et al.  Matching Categorical Object Representations in Inferior Temporal Cortex of Man and Monkey , 2008, Neuron.

[35]  D. Pandya,et al.  Fiber Pathways of the Brain , 2006 .

[36]  G. Luppino,et al.  Cortical connections of the macaque caudal ventrolateral prefrontal areas 45A and 45B. , 2010, Cerebral cortex.

[37]  P. Goldman-Rakic,et al.  Dissociation of object and spatial processing domains in primate prefrontal cortex. , 1993, Science.

[38]  Dwight J. Kravitz,et al.  Task context impacts visual object processing differentially across the cortex , 2014, Proceedings of the National Academy of Sciences.

[39]  N. Kanwisher,et al.  The Fusiform Face Area: A Module in Human Extrastriate Cortex Specialized for Face Perception , 1997, The Journal of Neuroscience.

[40]  Nancy Kanwisher,et al.  Divide and conquer: A defense of functional localizers , 2006, NeuroImage.

[41]  Stephen José Hanson,et al.  Combinatorial codes in ventral temporal lobe for object recognition: Haxby (2001) revisited: is there a “face” area? , 2004, NeuroImage.

[42]  M. Riesenhuber,et al.  Categorization Training Results in Shape- and Category-Selective Human Neural Plasticity , 2007, Neuron.

[43]  E. Miller,et al.  Task-specific neural activity in the primate prefrontal cortex. , 2000, Journal of neurophysiology.

[44]  A. Chan,et al.  Functional organization and visual representations of human ventral lateral prefrontal cortex , 2013, Front. Psychol..

[45]  K. Grill-Spector,et al.  The functional architecture of the ventral temporal cortex and its role in categorization , 2014, Nature Reviews Neuroscience.

[46]  A. Wagner,et al.  Annals of the New York Academy of Sciences Cognitive Control and Right Ventrolateral Prefrontal Cortex: Reflexive Reorienting, Motor Inhibition, and Action Updating , 2022 .

[47]  Derek K. Jones,et al.  Virtual in Vivo Interactive Dissection of White Matter Fasciculi in the Human Brain , 2002, NeuroImage.

[48]  K. Grill-Spector,et al.  Relating retinotopic and object-selective responses in human lateral occipital cortex. , 2008, Journal of neurophysiology.

[49]  Leslie G. Ungerleider,et al.  Contribution of striate inputs to the visuospatial functions of parieto-preoccipital cortex in monkeys , 1982, Behavioural Brain Research.

[50]  N. Kanwisher,et al.  The Human Body , 2001 .

[51]  E. Miller,et al.  An integrative theory of prefrontal cortex function. , 2001, Annual review of neuroscience.

[52]  T. Stanford,et al.  Stimulus Selectivity in Dorsal and Ventral Prefrontal Cortex after Training in Working Memory Tasks , 2011, The Journal of Neuroscience.

[53]  Nikolaus Kriegeskorte,et al.  Visual representations are dominated by intrinsic fluctuations correlated between areas , 2015, NeuroImage.

[54]  David D. Cox,et al.  Functional magnetic resonance imaging (fMRI) “brain reading”: detecting and classifying distributed patterns of fMRI activity in human visual cortex , 2003, NeuroImage.

[55]  John A. Wolf,et al.  Neural Substrate Expansion for the Restoration of Brain Function , 2016, Front. Syst. Neurosci..

[56]  Chris I. Baker,et al.  Multi-Voxel Decoding and the Topography of Maintained Information During Visual Working Memory , 2016, Front. Syst. Neurosci..

[57]  Bryan R. Conroy,et al.  A Common, High-Dimensional Model of the Representational Space in Human Ventral Temporal Cortex , 2011, Neuron.

[58]  Michel Thiebaut de Schotten,et al.  Short frontal lobe connections of the human brain , 2012, Cortex.

[59]  Robert T. Knight,et al.  Contributions of Subregions of the Prefrontal Cortex to Working Memory: Evidence from Brain Lesions in Humans , 2002, Journal of Cognitive Neuroscience.

[60]  P. Downing,et al.  The neural basis of visual body perception , 2007, Nature Reviews Neuroscience.

[61]  Conny F. Schmidt,et al.  Face perception is mediated by a distributed cortical network , 2005, Brain Research Bulletin.

[62]  Jemett L. Desmond,et al.  Semantic encoding and retrieval in the left inferior prefrontal cortex: a functional MRI study of task difficulty and process specificity , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[63]  B. Wandell,et al.  Visualization and Measurement of the Cortical Surface , 2000, Journal of Cognitive Neuroscience.

[64]  P. Goldman-Rakic,et al.  Areal segregation of face-processing neurons in prefrontal cortex. , 1997, Science.

[65]  S Lehéricy,et al.  The visual word form area: spatial and temporal characterization of an initial stage of reading in normal subjects and posterior split-brain patients. , 2000, Brain : a journal of neurology.

[66]  Xiao-Jing Wang,et al.  The importance of mixed selectivity in complex cognitive tasks , 2013, Nature.

[67]  Nancy Kanwisher,et al.  The Quest for the FFA and Where It Led , 2017, The Journal of Neuroscience.

[68]  K. Grill-Spector,et al.  Differential development of high-level visual cortex correlates with category-specific recognition memory , 2007, Nature Neuroscience.

[69]  Michael L. Waskom,et al.  Frontoparietal Representations of Task Context Support the Flexible Control of Goal-Directed Cognition , 2014, The Journal of Neuroscience.

[70]  Laurie S. Glezer,et al.  Evidence for Highly Selective Neuronal Tuning to Whole Words in the “Visual Word Form Area” , 2009, Neuron.

[71]  P. Goldman-Rakic Regional and cellular fractionation of working memory. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[72]  Dirk B. Walther,et al.  Natural Scene Categories Revealed in Distributed Patterns of Activity in the Human Brain , 2009, The Journal of Neuroscience.

[73]  R. Tootell,et al.  An anterior temporal face patch in human cortex, predicted by macaque maps , 2009, Proceedings of the National Academy of Sciences.

[74]  Katrin Amunts,et al.  The mid-fusiform sulcus: A landmark identifying both cytoarchitectonic and functional divisions of human ventral temporal cortex , 2014, NeuroImage.

[75]  Josef Parvizi,et al.  Corresponding ECoG and fMRI category-selective signals in human ventral temporal cortex , 2016, Neuropsychologia.

[76]  Nancy Kanwisher,et al.  Language-Selective and Domain-General Regions Lie Side by Side within Broca’s Area , 2012, Current Biology.

[77]  A. Ishai,et al.  Distributed and Overlapping Representations of Faces and Objects in Ventral Temporal Cortex , 2001, Science.

[78]  T. Poggio,et al.  Hierarchical models of object recognition in cortex , 1999, Nature Neuroscience.

[79]  Bruno Rossion,et al.  Introduction to the special issue on functional selectivity in perceptual and cognitive systems - a tribute to Shlomo Bentin (1946-2012) , 2016, Neuropsychologia.

[80]  Kalanit Grill-Spector,et al.  Temporal Processing Capacity in High-Level Visual Cortex Is Domain Specific , 2015, The Journal of Neuroscience.

[81]  David J. Freedman,et al.  The prefrontal cortex: categories, concepts and cognition. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[82]  Lizabeth M Romanski,et al.  Domain specificity in the primate prefrontal cortex , 2004, Cognitive, affective & behavioral neuroscience.

[83]  Leslie G. Ungerleider,et al.  Projections from inferior temporal cortex to prefrontal cortex via the uncinate fascicle in rhesus monkeys , 2004, Experimental Brain Research.

[84]  H. P. Op de Beeck,et al.  Task Context Overrules Object- and Category-Related Representational Content in the Human Parietal Cortex , 2017, Cerebral cortex.

[85]  Kendrick N. Kay,et al.  Attention Reduces Spatial Uncertainty in Human Ventral Temporal Cortex , 2015, Current Biology.

[86]  Matthew F S Rushworth,et al.  Attentional Selection and Action Selection in the Ventral and Orbital Prefrontal Cortex , 2005, The Journal of Neuroscience.

[87]  Leslie G. Ungerleider,et al.  Transient and sustained activity in a distributed neural system for human working memory , 1997, Nature.