ACCESS: a featureless optical transmission spectrum for WASP-19b from Magellan/IMACS

The short period ($0.94$-day) transiting exoplanet WASP-19b is an exceptional target for transmission spectroscopy studies, due to its relatively large atmospheric scale-height ($\sim 500$ km) and equilibrium temperature ($\sim 2100$ K). Here we report on six precise spectroscopic Magellan/IMACS observations, five of which target the full optical window from $0.45-0.9\mu$m and one targeting the $0.4-0.55\mu$m blue-optical range. Five of these datasets are consistent with a transmission spectrum without any significant spectral features, while one shows a significant slope as a function of wavelength, which we interpret as arising from photospheric heterogeneities in the star. Coupled with HST/WFC3 infrared observations, our optical/near-infrared measurements point to the presence of high altitude clouds in WASP-19b's atmosphere in agreement with previous studies. Using a semi-analytical retrieval approach, considering both planetary and stellar spectral features, we find a water abundance consistent with solar for WASP-19b and strong evidence for sub-solar abundances for optical absorbers such as TiO and Na; no strong optical slope is detected, which suggests that if hazes are present, they are much weaker than previously suggested. In addition, two spot-crossing events are observed in our datasets and analyzed, including one of the first unambiguously detected bright spot-crossing events on an exoplanet host star.

[1]  Yifan Zhou,et al.  The Near-infrared Transmission Spectra of TRAPPIST-1 Planets b, c, d, e, f, and g and Stellar Contamination in Multi-epoch Transit Spectra , 2018, The Astronomical Journal.

[2]  Mark S. Giampapa,et al.  The Transit Light Source Effect: False Spectral Features and Incorrect Densities for M-dwarf Transiting Planets , 2017, 1711.05691.

[3]  Antonio Claret,et al.  Detection of titanium oxide in the atmosphere of a hot Jupiter , 2017, Nature.

[4]  J. Fortney,et al.  Gemini/GMOS Transmission Spectral Survey: Complete Optical Transmission Spectrum of the Hot Jupiter WASP-4b , 2017, 1707.06575.

[5]  Astrophysics,et al.  The All-Sky Automated Survey for Supernovae (ASAS-SN) Light Curve Server v1.0 , 2017, 1706.07060.

[6]  Daniel Foreman-Mackey,et al.  Fast and Scalable Gaussian Process Modeling with Applications to Astronomical Time Series , 2017, 1703.09710.

[7]  Kevin Heng,et al.  The theory of transmission spectra revisited: a semi-analytical method for interpreting WFC3 data and an unresolved challenge , 2017, 1702.02051.

[8]  T. Evans,et al.  VLT/FORS2 comparative transmission spectroscopy II: confirmation of a cloud-deck and Rayleigh scattering in WASP-31b, but no potassium? , 2017, 1702.02150.

[9]  R. MacDonald,et al.  HD 209458b in new light: evidence of nitrogen chemistry, patchy clouds and sub-solar water , 2017, 1701.01113.

[10]  J. Barstow,et al.  HST PanCET Program: A Cloudy Atmosphere for the Promising JWST Target WASP-101b , 2017, 1701.00843.

[11]  D. Apai,et al.  ACCESS I. AN OPTICAL TRANSMISSION SPECTRUM OF GJ 1214b REVEALS A HETEROGENEOUS STELLAR PHOTOSPHERE , 2016, 1612.00228.

[12]  Jonathan Fortney,et al.  Metal Enrichment Leads to Low Atmospheric C/O Ratios in Transiting Giant Exoplanets , 2016, 1611.08616.

[13]  Nikku Madhusudhan,et al.  Atmospheric signatures of giant exoplanet formation by pebble accretion , 2016, 1611.03083.

[14]  S. Aigrain,et al.  A CONSISTENT RETRIEVAL ANALYSIS OF 10 HOT JUPITERS OBSERVED IN TRANSMISSION , 2016, 1610.01841.

[15]  T. Evans,et al.  VLT FORS2 COMPARATIVE TRANSMISSION SPECTROSCOPY: DETECTION OF Na IN THE ATMOSPHERE OF WASP-39b FROM THE GROUND , 2016, 1610.01186.

[16]  Santiago de Chile,et al.  Potassium detection in the clear atmosphere of a hot-Jupiter. FORS2 transmission spectroscopy of WASP-17b , 2016, 1609.03906.

[17]  Christoph Mordasini,et al.  THE IMPRINT OF EXOPLANET FORMATION HISTORY ON OBSERVABLE PRESENT-DAY SPECTRA OF HOT JUPITERS , 2016, 1609.03019.

[18]  David J Armstrong,et al.  Transmission spectroscopy of the inflated exoplanet WASP-52b, and evidence for a bright region on the stellar surface , 2016, 1608.08993.

[19]  T. Evans,et al.  DETECTION OF H2O AND EVIDENCE FOR TiO/VO IN AN ULTRA-HOT EXOPLANET ATMOSPHERE , 2016, 1604.02310.

[20]  Ahmed F. Al-Refaie,et al.  The ExoMol database: Molecular line lists for exoplanet and other hot atmospheres , 2016, 1603.05890.

[21]  Vivien Parmentier,et al.  TRANSITIONS IN THE CLOUD COMPOSITION OF HOT JUPITERS , 2016, 1602.03088.

[22]  A. Jord'an,et al.  Limb darkening and exoplanets – II. Choosing the best law for optimal retrieval of transit parameters , 2016, 1601.05485.

[23]  A. Burrows,et al.  HST HOT-JUPITER TRANSMISSION SPECTRAL SURVEY: CLEAR SKIES FOR COOL SATURN WASP-39b , 2016, 1601.04761.

[24]  A. Mandell,et al.  MARGINALIZING INSTRUMENT SYSTEMATICS IN HST WFC3 TRANSIT LIGHT CURVES , 2016, 1601.02587.

[25]  Nikole K. Lewis,et al.  3.6 AND 4.5 μm SPITZER PHASE CURVES OF THE HIGHLY IRRADIATED HOT JUPITERS WASP-19b AND HAT-P-7b , 2015, 1512.09342.

[26]  T. Evans,et al.  A continuum from clear to cloudy hot-Jupiter exoplanets without primordial water depletion , 2015, Nature.

[27]  J. Livingston,et al.  A CHARACTERISTIC TRANSMISSION SPECTRUM DOMINATED BY H2O APPLIES TO THE MAJORITY OF HST/WFC3 EXOPLANET OBSERVATIONS , 2015, 1512.00151.

[28]  Tiago M. Fragoso,et al.  Bayesian Model Averaging: A Systematic Review and Conceptual Classification , 2015, 1509.08864.

[29]  Laura Kreidberg,et al.  batman: BAsic Transit Model cAlculatioN in Python , 2015, 1507.08285.

[30]  H. C. Stempels,et al.  A major upgrade of the VALD database , 2015 .

[31]  Jacob L. Bean,et al.  A DETECTION OF WATER IN THE TRANSMISSION SPECTRUM OF THE HOT JUPITER WASP-12b AND IMPLICATIONS FOR ITS ATMOSPHERIC COMPOSITION , 2015, 1504.05586.

[32]  A. Jord'an,et al.  Limb darkening and exoplanets: testing stellar model atmospheres and identifying biases in transit parameters , 2015, 1503.07020.

[33]  N. Gibson,et al.  Regaining the FORS: optical ground-based transmission spectroscopy of the exoplanet WASP-19b with VLT+FORS2 , 2015, 1503.04155.

[34]  Kevin Heng,et al.  HELIOS-K: AN ULTRAFAST, OPEN-SOURCE OPACITY CALCULATOR FOR RADIATIVE TRANSFER , 2015, 1503.03806.

[35]  Tucson,et al.  HST hot-Jupiter transmission spectral survey: haze in the atmosphere of WASP-6b , 2014, 1411.4567.

[36]  S. Aigrain,et al.  HST hot-Jupiter transmission spectral survey: detection of potassium in WASP-31b along with a cloud deck and Rayleigh scattering , 2014, 1410.7611.

[37]  Drake Deming,et al.  Water vapour absorption in the clear atmosphere of a Neptune-sized exoplanet , 2014, Nature.

[38]  N. Gibson Reliable inference of exoplanet light-curve parameters using deterministic and stochastic systematics models , 2014, 1409.5668.

[39]  Sara Seager,et al.  A PRECISE WATER ABUNDANCE MEASUREMENT FOR THE HOT JUPITER WASP-43b , 2014, 1410.2255.

[40]  David M. Kipping,et al.  spotrod: a semi-analytic model for transits of spotted stars , 2014, 1407.4465.

[41]  A. Santerne,et al.  Impact of occultations of stellar active regions on transmission spectra: Can occultation of a plage mimic the signature of a blue sky? , 2014, 1407.2066.

[42]  A. Merloni,et al.  X-ray spectral modelling of the AGN obscuring region in the CDFS: Bayesian model selection and catalogue , 2014, 1402.0004.

[43]  J. Bean,et al.  Clouds in the atmosphere of the super-Earth exoplanet GJ 1214b , 2013, Nature.

[44]  Andrew Szentgyorgyi,et al.  A GROUND-BASED OPTICAL TRANSMISSION SPECTRUM OF WASP-6b , 2013, 1310.6048.

[45]  Drake Deming,et al.  EXOPLANET TRANSIT SPECTROSCOPY USING WFC3: WASP-12 b, WASP-17 b, AND WASP-19 b , 2013, 1310.2949.

[46]  J. Prieto,et al.  THE MAN BEHIND THE CURTAIN: X-RAYS DRIVE THE UV THROUGH NIR VARIABILITY IN THE 2013 ACTIVE GALACTIC NUCLEUS OUTBURST IN NGC 2617 , 2013, 1310.2241.

[47]  S. Aigrain,et al.  Hubble Space Telescope hot Jupiter transmission spectral survey: a detection of Na and strong optical absorption in HAT-P-1b , 2013, 1310.0083.

[48]  S. Aigrain,et al.  The optical transmission spectrum of the hot Jupiter HAT-P-32b: clouds explain the absence of broad spectral features? , 2013, 1309.6998.

[49]  S. Aigrain,et al.  Hst hot jupiter transmission spectral survey: Detection of water in HAT-P-1b from WFC3 near-IR spatial scan observations , 2013, 1308.2106.

[50]  D. Kipping Efficient, uninformative sampling of limb darkening coefficients for two-parameter laws , 2013, 1308.0009.

[51]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[52]  T. Evans,et al.  An HST optical-to-near-IR transmission spectrum of the hot Jupiter WASP-19b: detection of atmospheric water and likely absence of TiO , 2013, 1307.2083.

[53]  J. Southworth,et al.  Physical properties, transmission and emission spectra of the WASP-19 planetary system from multi-colour photometry , 2013, 1306.6384.

[54]  Andreas Seifahrt,et al.  TRANSMISSION SPECTROSCOPY OF THE HOT JUPITER WASP-12b FROM 0.7 TO 5 μm , 2013, 1305.1670.

[55]  Ansgar Reiners,et al.  A new extensive library of PHOENIX stellar atmospheres and synthetic spectra , 2013, 1303.5632.

[56]  Sergei N. Yurchenko,et al.  Vibrational transition moments of CH4 from first principles , 2013, 1302.1720.

[57]  Mark Clampin,et al.  INFRARED TRANSMISSION SPECTROSCOPY OF THE EXOPLANETS HD 209458b AND XO-1b USING THE WIDE FIELD CAMERA-3 ON THE HUBBLE SPACE TELESCOPE , 2013, 1302.1141.

[58]  A. Showman,et al.  3D mixing in hot Jupiters atmospheres. I. Application to the day/night cold trap in HD 209458b , 2013, 1301.4522.

[59]  A. Erikson,et al.  The effect of stellar limb darkening values on the accuracy of the planet radii derived from photometric transit observations , 2012, 1212.2372.

[60]  R. Freedman,et al.  CHEMICAL CONSEQUENCES OF THE C/O RATIO ON HOT JUPITERS: EXAMPLES FROM WASP-12b, CoRoT-2b, XO-1b, AND HD 189733b , 2012, The Astrophysical journal.

[61]  E. Kerins,et al.  Transits and starspots in the WASP-6 planetary system , 2012, 1211.0864.

[62]  S. Aigrain,et al.  A Gemini ground-based transmission spectrum of WASP-29b: a featureless spectrum from 515 to 720 nm , 2012, 1210.7798.

[63]  A. Cameron,et al.  Accurate spectroscopic parameters of WASP planet host stars , 2012, 1210.5931.

[64]  S. Aigrain,et al.  The prevalence of dust on the exoplanet HD 189733b from Hubble and Spitzer observations , 2012, 1210.4163.

[65]  Nikku Madhusudhan,et al.  C/O RATIO AS A DIMENSION FOR CHARACTERIZING EXOPLANETARY ATMOSPHERES , 2012, 1209.2412.

[66]  D. Ehrenreich,et al.  GTC OSIRIS transiting exoplanet atmospheric survey: detection of sodium in XO-2b from differential long-slit spectroscopy† , 2012, 1208.4982.

[67]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[68]  Edwin A. Bergin,et al.  THE EFFECTS OF SNOWLINES ON C/O IN PLANETARY ATMOSPHERES , 2011, 1110.5567.

[69]  S. Aigrain,et al.  Correction to: A simple method to estimate radial velocity variations due to stellar activity using photometry , 2011, Monthly Notices of the Royal Astronomical Society.

[70]  N. Gibson,et al.  Hubble Space Telescope transmission spectroscopy of the exoplanet HD 189733b: high‐altitude atmospheric haze in the optical and near‐ultraviolet with STIS , 2011, 1103.0026.

[71]  D. Kelson,et al.  IMACS: The Inamori-Magellan Areal Camera and Spectrograph on Magellan-Baade , 2011 .

[72]  D. Queloz,et al.  ON THE ORBIT OF THE SHORT-PERIOD EXOPLANET WASP-19b , 2011, 1101.3293.

[73]  Jonathan Tennyson,et al.  HITEMP, the high-temperature molecular spectroscopic database , 2010 .

[74]  D. Ehrenreich,et al.  Gran Telescopio Canarias OSIRIS transiting exoplanet atmospheric survey: detection of potassium in XO-2b from narrowband spectrophotometry , 2010, 1008.4795.

[75]  B. Scott Gaudi,et al.  Achieving Better Than 1 Minute Accuracy in the Heliocentric and Barycentric Julian Dates , 2010, 1005.4415.

[76]  R. G. West,et al.  WASP-19b: THE SHORTEST PERIOD TRANSITING EXOPLANET YET DISCOVERED , 2010, 1001.0403.

[77]  F. Feroz,et al.  MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics , 2008, 0809.3437.

[78]  R. Trotta Bayes in the sky: Bayesian inference and model selection in cosmology , 2008, 0803.4089.

[79]  A. D. Etangs,et al.  Rayleigh scattering in the transit spectrum of HD 189733b , 2008, 0802.3228.

[80]  S. Walton,et al.  The Behavior of Sunspot Contrast during Cycle 23 , 2008 .

[81]  C. Moutou,et al.  Detection of atmospheric haze on an extrasolar planet: the 0.55–1.05 μm transmission spectrum of HD 189733b with the Hubble Space Telescope , 2007, 0712.1374.

[82]  L. Koesterke,et al.  Sodium Absorption from the Exoplanetary Atmosphere of HD 189733b Detected in the Optical Transmission Spectrum , 2007, 0712.0761.

[83]  Jonathan J. Fortney,et al.  The effect of condensates on the characterization of transiting planet atmospheres with transmission spectroscopy , 2005, astro-ph/0509292.

[84]  William B. Hubbard,et al.  A Theory for the Radius of the Transiting Giant Planet HD 209458b , 2003, astro-ph/0305277.

[85]  R. Gilliland,et al.  Detection of an Extrasolar Planet Atmosphere , 2001, astro-ph/0111544.

[86]  T. Brown Transmission Spectra as Diagnostics of Extrasolar Giant Planet Atmospheres , 2001, astro-ph/0101307.

[87]  A. Burrows,et al.  Theory of Extrasolar Giant Planet Transits , 2001, astro-ph/0101024.

[88]  Princeton,et al.  Theoretical Transmission Spectra during Extrasolar Giant Planet Transits , 1999, astro-ph/9912241.

[89]  H. Zirin,et al.  Contrast of Faculae at 1.6 Microns , 1998 .

[90]  J. Cavanaugh Unifying the derivations for the Akaike and corrected Akaike information criteria , 1997 .

[91]  R. Kurucz Model atmospheres for G, F, A, B, and O stars , 1979 .