Epistemic foundation of stable model semantics

Stable model semantics has become a very popular approach for the management of negation in logic programming. This approach relies mainly on the closed world assumption to complete the available knowledge and its formulation has its basis in the so-called Gelfond–Lifschitz transformation. The primary goal of this work is to present an alternative and epistemic-based characterization of stable model semantics, to the Gelfond-Lifschitz transformation. In particular, we show that stable model semantics can be defined entirely as an extension of the Kripke-Kleene semantics. Indeed, we show that the closed world assumption can be seen as an additional source of ‘falsehood’ to be added cumulatively to the Kripke-Kleene semantics. Our approach is purely algebraic and can abstract from the particular formalism of choice as it is based on monotone operators (under the knowledge order) over bilattices only.

[1]  Ofer Arieli,et al.  Paraconsistent Declarative Semantics for Extended Logic Programs , 2010 .

[2]  Vladimir Lifschitz,et al.  Answer set programming and plan generation , 2002, Artif. Intell..

[3]  J. Michael Dunn,et al.  Relevance Logic and Entailment , 1986 .

[4]  Umberto Straccia,et al.  The Well-Founded Semantics in Normal Logic Programs with Uncertainty , 2002, FLOPS.

[5]  Melvin Fitting,et al.  A Kripke-Kleene Semantics for Logic Programs , 1985, J. Log. Program..

[6]  H. Levesque Logic and the complexity of reasoning , 1988 .

[7]  Thomas Lukasiewicz,et al.  Fixpoint Characterizations for Many-Valued Disjunctive Logic Programs with Probabilistic Semantics , 2001, LPNMR.

[8]  Raymond Reiter On Closed World Data Bases , 1977, Logic and Data Bases.

[9]  Victor W. Marek,et al.  Approximations, stable operators, well-founded fixpoints and applications in nonmonotonic reasoning , 2000 .

[10]  Raymond Reiter,et al.  A Logic for Default Reasoning , 1987, Artif. Intell..

[11]  Melvin Fitting,et al.  Fixpoint Semantics for Logic Programming a Survey , 2001, Theor. Comput. Sci..

[12]  Victor W. Marek,et al.  Uniform semantic treatment of default and autoepistemic logics , 2000, Artif. Intell..

[13]  A. Tarski A LATTICE-THEORETICAL FIXPOINT THEOREM AND ITS APPLICATIONS , 1955 .

[14]  Gerd Wagner,et al.  Stable Models Are Generated by a Stabel Chain , 1997, J. Log. Program..

[15]  Hector J. Levesque,et al.  A Logic of Implicit and Explicit Belief , 1984, AAAI.

[16]  Umberto Straccia,et al.  Uncertainty and Partial Non-uniform Assumptions in Parametric Deductive Databases , 2002, JELIA.

[17]  Francesco Scarcello,et al.  Disjunctive Stable Models: Unfounded Sets, Fixpoint Semantics, and Computation , 1997, Inf. Comput..

[18]  Victor W. Marek,et al.  Stable models and an alternative logic programming paradigm , 1998, The Logic Programming Paradigm.

[19]  Nuel D. Belnap,et al.  Entailment : the logic of relevance and necessity , 1975 .

[20]  Melvin Fitting,et al.  The Family of Stable Models , 1993, J. Log. Program..

[21]  Luís Moniz Pereira,et al.  Antitonic Logic Programs , 2001, LPNMR.

[22]  Arnon Avron The Structure of Interlaced Bilattices , 1996, Math. Struct. Comput. Sci..

[23]  Umberto Straccia,et al.  Default Knowledge in Logic Programs with Uncertainty , 2003, ICLP.

[24]  J. Lloyd Foundations of Logic Programming , 1984, Symbolic Computation.

[25]  A Artyszak,et al.  P i K , 2003 .

[26]  C. Damásio,et al.  A survey of paraconsistent semantics for logic programs , 1998 .

[27]  Umberto Straccia,et al.  The Well-Founded Semantics of Logic Programs over Bilattices : an Alternative Characterisation , 2003 .

[28]  Juliana Freire,et al.  XSB: A System for Effciently Computing WFS , 1997, LPNMR.

[29]  Matthew L. Ginsberg,et al.  Multivalued logics: a uniform approach to reasoning in artificial intelligence , 1988, Comput. Intell..

[30]  Umberto Straccia,et al.  The Approximate Well-Founded Semantics for Logic Programs with Uncertainty , 2003, MFCS.

[31]  Arnon Avron,et al.  Reasoning with logical bilattices , 1996, J. Log. Lang. Inf..

[32]  Teodor C. Przymusinski Stationary Semantics for Disjunctive Logic Programs and Deductive Databases , 1990, NACLP.

[33]  Ilkka Niemelä,et al.  Logic programs with stable model semantics as a constraint programming paradigm , 1999, Annals of Mathematics and Artificial Intelligence.

[34]  Kenneth A. Ross,et al.  The well-founded semantics for general logic programs , 1991, JACM.

[35]  V. S. Subrahmanian,et al.  Paraconsistent Logic Programming , 1987, Theor. Comput. Sci..

[36]  Marc Denecker,et al.  The Well-Founded Semantics Is the Principle of Inductive Definition , 1998, JELIA.

[37]  Victor W. Marek,et al.  Ultimate Approximations in Nonmonotonic Knowledge Representation Systems , 2002, KR.

[38]  Matthew L. Ginsberg,et al.  Readings in Nonmonotonic Reasoning , 1987, AAAI 1987.

[39]  V. S. Subrahmanian,et al.  Stable Model Semantics for Probabilistic Deductive Databases , 1990, ISMIS.

[40]  Arnon Avron,et al.  The Value of the Four Values , 1998, Artif. Intell..

[41]  Victor W. Marek,et al.  Logic programming revisited , 2001, ACM Trans. Comput. Log..

[42]  J. W. Lloyd,et al.  Foundations of logic programming; (2nd extended ed.) , 1987 .

[43]  Luís Moniz Pereira,et al.  Paraconsistent Logic Programs , 2002, JELIA.

[44]  Kenneth Kunen,et al.  Negation in Logic Programming , 1987, J. Log. Program..

[45]  Jack Minker,et al.  Logic-Based Artificial Intelligence , 2000 .

[46]  Jürg Kohlas,et al.  Handbook of Defeasible Reasoning and Uncertainty Management Systems , 2000 .

[47]  Melvin Fitting,et al.  Bilattices and the Semantics of Logic Programming , 1991, J. Log. Program..

[48]  Allen Van Gelder,et al.  The Alternating Fixpoint of Logic Programs with Negation , 1993, J. Comput. Syst. Sci..

[49]  Robert A. Kowalski,et al.  The Semantics of Predicate Logic as a Programming Language , 1976, JACM.

[50]  Nuel D. Belnap,et al.  A Useful Four-Valued Logic , 1977 .

[51]  Melvin Fitting,et al.  Kleene's Logic, Generalized , 1991, J. Log. Comput..

[52]  Teodor C. Przymusinski The Well-Founded Semantics Coincides with the Three-Valued Stable Semantics , 1990, Fundam. Inform..

[53]  Robert C. Moore Possible-World Semantics for Autoepistemic Logic , 1987, NMR.

[54]  Teodor C. Przymusinski Extended Stable Semantics for Normal and Disjunctive Programs , 1990, ICLP.

[55]  J. Dunn,et al.  Intuitive semantics for first-degree entailments and ‘coupled trees’ , 1976 .