Effect of anisotropic MoS2 nanoparticles on the blue phase range of a chiral liquid crystal.

Liquid-crystalline blue phases are attracting significant interest due to their potential for applications related to tunable photonic crystals and fast optical displays. In this work a brief theoretical model is presented accounting for the impact of anisotropic nanoparticles on the blue phase stability region. This model is tested by means of high-resolution calorimetric and optical measurements of the effect of anisotropic, surface-functionalized MoS2 nanoparticles on the blue phase range of a chiral liquid crystal. The addition of these nanoparticles effectively increases the temperature range of blue phases and especially the cubic structure of blue phase I.

[1]  Thoen Adiabatic scanning calorimetric results for the blue phases of cholesteryl nonanoate. , 1988, Physical review. A, General physics.

[2]  Keyes Is blue phase II fcc? , 1987, Physical review letters.

[3]  H. Higuchi,et al.  Polymer-stabilized supercooled blue phase , 2012 .

[4]  Jun-ichi Fukuda Stability of cholesteric blue phases in the presence of a guest component. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  Yan Li,et al.  Low voltage and high transmittance blue-phase liquid crystal displays with corrugated electrodes , 2010 .

[6]  S. Kralj,et al.  Random anisotropy nematic model: Connection with experimental systems , 2004, The European physical journal. E, Soft matter.

[7]  I. Dierking,et al.  Stabilising liquid crystalline Blue Phases , 2012 .

[8]  Peter Palffy-Muhoray,et al.  Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II , 2002, Nature materials.

[9]  Shin-Tson Wu,et al.  Low voltage blue-phase liquid crystal displays , 2009 .

[10]  M E Cates,et al.  Structure of blue phase III of cholesteric liquid crystals. , 2011, Physical review letters.

[11]  Hiroyuki Yoshida,et al.  Nanoparticle-Stabilized Cholesteric Blue Phases , 2009 .

[12]  M. Osipov,et al.  Mean-field theory of a nematic liquid crystal doped with anisotropic nanoparticles , 2011 .

[13]  T. Hirose,et al.  Amorphous Blue Phase III Exhibiting Submillisecond Response and Hysteresis-Free Switching at Room Temperature , 2011 .

[14]  Shin-Tson Wu,et al.  Polarization independent blue-phase liquid crystal cylindrical lens with a resistive film. , 2012, Applied optics.

[15]  T. Nagamura,et al.  Large Electro‐optic Kerr Effect in Polymer‐Stabilized Liquid‐Crystalline Blue Phases , 2005 .

[16]  V. S. R. Jampani,et al.  Different modulated structures of topological defects stabilized by adaptive targeting nanoparticles , 2013 .

[17]  C. Glorieux,et al.  Blue phase III widening in CE6-dispersed surface-functionalised CdSe nanoparticles , 2010 .

[18]  P. Pieranski,et al.  Infinite Periodic Minimal Surfaces: A Model for Blue Phases , 1990 .

[19]  Miha Ravnik,et al.  Three-dimensional colloidal crystals in liquid crystalline blue phases , 2011, Proceedings of the National Academy of Sciences.

[20]  Huang-Ming P. Chen,et al.  Evaluation of Kerr constant of blue-phase liquid crystals by measuring off-axis retardation in vertical electric field cells. , 2011, Applied optics.

[21]  Masayuki Yokota,et al.  Polymer-stabilized liquid crystal blue phases , 2002, Nature materials.

[22]  C. Glorieux,et al.  Nanoparticle-induced widening of the temperature range of liquid-crystalline blue phases. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  K. Ema,et al.  Nonadiabatic scanning calorimeter , 1998 .

[24]  Keyes Ph,et al.  LIGHT-SCATTERING STUDY OF THE STRUCTURE OF BLUE PHASE III , 1995 .

[25]  E. Virga,et al.  Theoretical and experimental study of the nanoparticle-driven blue phase stabilisation , 2011, The European physical journal. E, Soft matter.

[26]  Julia M. Yeomans,et al.  Confining blue phase colloids to thin layers , 2011 .

[27]  Yunfeng Lu,et al.  Hysteresis-free blue phase liquid-crystal-stabilized by ZnS nanoparticles. , 2012, Small.