A perfect metamaterial polarization rotator

Polarization conveys valuable information for electromagnetic signal processing exhibiting tremendous potential in developing application driven photonic devices. Manipulation of polarization state of an electromagnetic wave has drawn a lot of research interests in many different fields, especially in the terahertz regime. Here, we propose a unique approach to efficiently rotate the linear polarization of terahertz wave in a broadband configuration with tri-layer metasurfaces. We experimentally observe a nearly perfect orthogonal polarization conversion with an ultrahigh efficiency, demonstrating a ultrathin terahetz rotator. The Fabry-Perot cavity effect in the tri-layer metasurfaces is attributed to the underlying mechanism of high transmittance and polarization rotation.

[1]  J. Federici,et al.  THz imaging and sensing for security applications—explosives, weapons and drugs , 2005 .

[2]  Itsunari Yamada,et al.  Terahertz wire-grid polarizers with micrometer-pitch Al gratings. , 2009, Optics letters.

[3]  Masayoshi Tonouchi,et al.  Carbon nanotube terahertz polarizer. , 2009, Nano letters.

[4]  Christopher D. Stoik,et al.  Nondestructive evaluation of aircraft composites using transmissive terahertz time domain spectroscopy. , 2008, Optics express.

[5]  Shuang Zhang,et al.  Robust large dimension terahertz cloaking. , 2012, Advanced materials.

[6]  Weili Zhang,et al.  Transmission properties of terahertz pulses through subwavelength double split-ring resonators. , 2006, Optics letters.

[7]  N. Kanda,et al.  Terahertz wave polarization rotation with double layered metal grating of complimentary chiral patterns. , 2007, Optics express.

[8]  M. Lima,et al.  A reel-wound carbon nanotube polarizer for terahertz frequencies. , 2011, Nano letters.

[9]  Hui Zhang,et al.  Liquid-crystal-filled photonic crystal for terahertz switch and filter , 2009 .

[10]  A. Alú,et al.  Twisted optical metamaterials for planarized ultrathin broadband circular polarizers , 2012, Nature Communications.

[11]  Wei Cao,et al.  Hiding a Realistic Object Using a Broadband Terahertz Invisibility Cloak , 2011, Scientific reports.

[12]  A. K. Azad,et al.  Terahertz metamaterial with asymmetric transmission , 2009, 0908.2524.

[13]  Tobias Steinle,et al.  Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation , 2013, Nature Communications.

[14]  Weili Zhang,et al.  Manipulating polarization states of terahertz radiation using metamaterials , 2012 .

[15]  X-C Zhang,et al.  Coherent terahertz echo of tunnel ionization in gases. , 2009, Physical review letters.

[16]  Andrea Alù,et al.  Manipulating light polarization with ultrathin plasmonic metasurfaces , 2011 .

[17]  Dennis H. Goldstein,et al.  Polarized Light , 2010 .

[18]  I-Chen Ho,et al.  Design and performance of reflective terahertz air-biased-coherent-detection for time-domain spectroscopy. , 2010, Optics express.

[19]  D. Grischkowsky,et al.  Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors , 1990 .

[20]  Willie J Padilla,et al.  A metamaterial solid-state terahertz phase modulator , 2009 .

[21]  Masayoshi Tonouchi,et al.  Broadband terahertz polarizers with ideal performance based on aligned carbon nanotube stacks. , 2012, Nano letters.

[22]  Antoinette J. Taylor,et al.  Effects of Microstructure Variations on Macroscopic Terahertz Metafilm Properties , 2007 .

[23]  T. Kurner,et al.  Short-Range Ultra-Broadband Terahertz Communications: Concepts and Perspectives , 2007, IEEE Antennas and Propagation Magazine.

[24]  Chengkuo Lee,et al.  Fabry-Perot filter using grating structures. , 2013, Optics letters.

[25]  Martin Koch,et al.  Variable-focus terahertz lens. , 2011, Optics express.

[26]  Akhlesh Lakhtakia,et al.  Bilayer-fish-scale ultrabroad terahertz bandpass filter. , 2012, Optics letters.