A Formalism for Stochastic Decision Processes with Asynchronous Events
暂无分享,去创建一个
[1] L. Cantaluppi,et al. Optimality of Piecewise-Constant Policies in Semi-Markov Decision Chains , 1984 .
[2] Miklós Telek,et al. Acyclic discrete phase type distributions: properties and a parameter estimation algorithm , 2003, Perform. Evaluation.
[3] Håkan L. S. Younes,et al. Solving Generalized Semi-Markov Decision Processes Using Continuous Phase-Type Distributions , 2004, AAAI.
[4] P. Glynn. A GSMP formalism for discrete event systems , 1989, Proc. IEEE.
[5] Ronald A. Howard,et al. Dynamic Programming and Markov Processes , 1960 .
[6] Carlos Guestrin,et al. Multiagent Planning with Factored MDPs , 2001, NIPS.
[7] Marcel F. Neuts,et al. Matrix-geometric solutions in stochastic models - an algorithmic approach , 1982 .
[8] Gerald S. Shedler. Regenerative Stochastic Simulation , 1992 .
[9] Paul Adrien Maurice Dirac,et al. The physical interpretation of the quantum dynamics , 1927 .
[10] Rajeev Alur,et al. Model-Checking in Dense Real-time , 1993, Inf. Comput..
[11] S. S. Chitgopekar. Continuous Time Markovian Sequential Control Processes , 1969 .
[12] Sridhar Mahadevan,et al. Decision-Theoretic Planning with Concurrent Temporally Extended Actions , 2001, UAI.
[13] Lawrence D. Stone,et al. Necessary and Sufficient Conditions for Optimal Control of Semi-Markov Jump Processes , 1973 .
[14] Geoffrey J. Gordon. Stable Function Approximation in Dynamic Programming , 1995, ICML.
[15] Mausam,et al. Solving Concurrent Markov Decision Processes , 2004, AAAI.