Nanocomposites-a review of electrical treeing and breakdown

In this short review, we discussed some aspects of nanocomposites regarding electrical tree growth and breakdown. It appears that nanoparticles, properly mixed and dispersed in the polymer matrix, increase the breakdown strength and hinder the growth of electrical trees in the nanocomposite. Nanoparticles act as barriers obstructing electrical tree growth and delaying dielectric breakdown. This article also put forward a tentative proposal for the mechanisms of treeing and breakdown in nanocomposites.

[1]  V. Parameswaran,et al.  Improvement in surface degradation properties of polymer composites due to pre-processed nanometric alumina fillers , 2008, IEEE Transactions on Dielectrics and Electrical Insulation.

[2]  M.J. Thomas,et al.  Polymer composite/nanocomposite processing and its effect on the electrical properties , 2006, 2006 IEEE Conference on Electrical Insulation and Dielectric Phenomena.

[3]  Rainer Patsch,et al.  Electrical and water treeing: a chairman's view , 1992 .

[4]  T. Ozaki,et al.  Effects of nano- and micro-filler mixture on electrical insulation properties of epoxy based composites , 2006, IEEE Transactions on Dielectrics and Electrical Insulation.

[5]  N. Hozumi,et al.  DC conduction and electrical breakdown of MgO/LDPE nanocomposite , 2008, IEEE Transactions on Dielectrics and Electrical Insulation.

[6]  M. G. Danikas,et al.  Simulation of electrical tree propagation using cellular automata: the case of conducting particle included in a dielectric in point-plane electrode arrangement , 2005 .

[7]  T. Lewis Nanometric dielectrics , 1994 .

[8]  John C. Fothergill,et al.  Electrical degradation and breakdown in polymers , 1992 .

[9]  S. Singha,et al.  Dielectric properties of epoxy nanocomposites , 2008, IEEE Transactions on Dielectrics and Electrical Insulation.

[10]  Allan Greenwood,et al.  Effects of Charge Injection and Extraction on Tree Initiation in Polyethylene , 1978, IEEE Transactions on Power Apparatus and Systems.

[11]  V. Parameswaran,et al.  Degradation of polymer dielectrics with nanometric metal-oxide fillers due to surface discharges , 2008, IEEE Transactions on Dielectrics and Electrical Insulation.

[12]  R. Vogelsang,et al.  The effect of barriers on electrical tree propagation in composite insulation materials , 2006, IEEE Transactions on Dielectrics and Electrical Insulation.

[13]  Masahiro Kozako,et al.  Preparation and preliminary characteristic evaluation of epoxy/alumina nanocomposites , 2005, Proceedings of 2005 International Symposium on Electrical Insulating Materials, 2005. (ISEIM 2005)..

[14]  T. Tanaka,et al.  Dielectric nanocomposites with insulating properties , 2005, IEEE Transactions on Dielectrics and Electrical Insulation.

[15]  T. Okamoto,et al.  Surface degradation of polyamide nanocomposites caused by partial discharges using IEC (b) electrodes , 2004, IEEE Transactions on Dielectrics and Electrical Insulation.

[16]  Masayuki Ieda,et al.  Dielectric Breakdown Process of Polymers , 1980, IEEE Transactions on Electrical Insulation.

[17]  L. Schadler,et al.  Polymer nanocomposite dielectrics-the role of the interface , 2005, IEEE Transactions on Dielectrics and Electrical Insulation.

[18]  S. Zoledziowski,et al.  Void formation and electrical breakdown in epoxy resin , 1977, IEEE Transactions on Power Apparatus and Systems.

[19]  G. Montanari,et al.  Electrical tree growth in EVA-layered silicate nanocomposites , 2006, 2006 IEEE Conference on Electrical Insulation and Dielectric Phenomena.

[20]  K. Younsi,et al.  The future of nanodielectrics in the electrical power industry , 2004, IEEE Transactions on Dielectrics and Electrical Insulation.

[21]  C. Mayoux,et al.  Electrical Breakdown Due to Discharges in Different Types of Insulation , 1981, IEEE Transactions on Electrical Insulation.

[22]  M. Ieda,et al.  A consideration of treeing in polymers , 1972 .

[23]  Paul Budenstein,et al.  On the Mechanism of Dielectric Breakdown of Solids , 1980, IEEE Transactions on Electrical Insulation.

[24]  Y. Ohki,et al.  Enhanced Performance of Tree Initiation V-t Characteristics of Epoxy/Clay Nanocomposite in Comparison with Neat Epoxy Resin , 2008, 2008 Annual Report Conference on Electrical Insulation and Dielectric Phenomena.

[25]  M.F. Frechette,et al.  Introductory remarks on nanodielectrics , 2001, 2001 Annual Report Conference on Electrical Insulation and Dielectric Phenomena (Cat. No.01CH37225).

[26]  A. Jonscher,et al.  On a Cumulative Model of Dielectric Breakdown in Solids , 1984, IEEE Transactions on Electrical Insulation.

[27]  L. Schadler,et al.  The mechanisms leading to the useful electrical properties of polymer nanodielectrics , 2008, IEEE Transactions on Dielectrics and Electrical Insulation.

[28]  L. Schadler,et al.  Some mechanistic understanding of the impulse strength of nanocomposites , 2006, 2006 IEEE Conference on Electrical Insulation and Dielectric Phenomena.

[29]  S. Okabe,et al.  Treeing Phenomena in Epoxy/Alumina Nanocomposite and Interpretation by a Multi-core Model , 2006 .

[30]  J. K. Nelson,et al.  Overview of nanodielectrics: Insulating materials of the future , 2007, 2007 Electrical Insulation Conference and Electrical Manufacturing Expo.

[31]  J. Schwank,et al.  Adhesion and permeability of polyimide-clay nanocomposite films for protective coatings , 2003 .

[32]  J. Schoonman,et al.  Hybrid Metal Oxide–Polymer Nanostructured Composites: Structure and Properties , 2008 .

[33]  Limin Wu,et al.  Preparation and characterization of nanocomposite polyurethane. , 2004, Journal of colloid and interface science.

[34]  J. K. Nelson,et al.  Candidate mechanisms controlling the electrical characteristics of silica/XLPE nanodielectrics , 2007 .

[35]  M. Danikas,et al.  Simulation of Electrical Tree Propagation in a Solid Insulating Material Containing Spherical Insulating Particle of a Different Permittivity with the Aid of Cellular Automata , 2004 .

[36]  N. García,et al.  The development of electrical treeing in LDPE and its nanocomposites with spherical silica and fibrous and laminar silicates , 2008 .

[37]  L. Schadler Nanocomposites. Model interfaces. , 2007, Nature materials.

[38]  N. García,et al.  Comparing the effect of nanofillers as thermal stabilizers in low density polyethylene , 2009 .

[39]  Ioannis G. Karafyllidis,et al.  Simulation of electrical tree growth in solid dielectrics containing voids of arbitrary shape , 1996 .

[40]  D. W. Kitchin,et al.  Treeing in Polyethylene as a Prelude to Breakdown , 1957, Transactions of the American Institute of Electrical Engineers. Part III: Power Apparatus and Systems.

[41]  H. Ding,et al.  Effect of nano-fillers on electrical treeing in epoxy resin subjected to AC voltage , 2004, The 17th Annual Meeting of the IEEE Lasers and Electro-Optics Society, 2004. LEOS 2004..

[42]  J. K. Nelson,et al.  Nanocomposite dielectrics—properties and implications , 2005 .

[43]  O. Dorlanne,et al.  Thermally Stimulated Discharge of Polyethylene Following Ac Stressing , 1982, IEEE Transactions on Electrical Insulation.

[44]  E. Torello,et al.  AC electrical strength measurements on LDPE nanocomposites , 2006, 2006 IEEE Conference on Electrical Insulation and Dielectric Phenomena.

[45]  S. Okabe,et al.  Preparation and various characteristics of epoxy/alumina nanocomposites , 2006 .

[46]  R. Navarro,et al.  Electrical strength in ramp voltage AC tests of LDPE and its nanocomposites with silica and fibrous and laminar silicates , 2008 .