Space and Time in Perception and Action: Bridging the gap: a model of common neural mechanisms underlying the Fröhlich effect, the flash-lag effect, and the representational momentum effect

Deutscher Akademischer Austauschdienst (DAAD) / Conselho de Reitores das Universidades Portuguesas (CRUP) - As Accoes Integradas Luso - Alemas

[1]  Ruben Budelli,et al.  Spatial facilitation is involved in flash-lag effect , 2007, Vision Research.

[2]  Markus Lappe,et al.  A model of the perceived relative positions of moving objects based upon a slow averaging process , 2000, Vision Research.

[3]  C. Gilbert,et al.  Perceptual learning and top-down influences in primary visual cortex , 2004, Nature Neuroscience.

[4]  K. Kreegipuu,et al.  Perceived onset time and position of a moving stimulus , 2003, Vision Research.

[5]  V. Bringuier,et al.  Horizontal propagation of visual activity in the synaptic integration field of area 17 neurons. , 1999, Science.

[6]  Rodney J. Douglas,et al.  Feedback interactions between neuronal pointers and maps for attentional processing , 1999, Nature Neuroscience.

[7]  Shinsuke Shimojo,et al.  Compensation of neural delays in visual‐motor behaviour: No evidence for shorter afferent delays for visual motion , 2004 .

[8]  P. Cavanagh,et al.  Illusory spatial offset of a flash relative to a moving stimulus is caused by differential latencies for moving and flashed stimuli , 2000, Vision Research.

[9]  T J Sejnowski,et al.  Motion integration and postdiction in visual awareness. , 2000, Science.

[10]  J. Bharucha,et al.  Judged displacement in apparent vertical and horizontal motion , 1988, Perception & psychophysics.

[11]  Peter Dayan,et al.  Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems , 2001 .

[12]  Michael J. Berry,et al.  Anticipation of moving stimuli by the retina , 1999, Nature.

[13]  Wolfram Erlhagen,et al.  The role of action plans and other cognitive factors in motion extrapolation: A modelling study , 2004 .

[14]  A. Grinvald,et al.  Real-time optical imaging of naturally evoked electrical activity in intact frog brain , 1984, Nature.

[15]  Amir C. Akhavan,et al.  Parametric Population Representation of Retinal Location: Neuronal Interaction Dynamics in Cat Primary Visual Cortex , 1999, The Journal of Neuroscience.

[16]  Haim Sompolinsky,et al.  Traveling Waves and the Processing of Weakly Tuned Inputs in a Cortical Network Module , 2004, Journal of Computational Neuroscience.

[17]  W. Metzger,et al.  Versuch einer gemeinsamen Theorie der Phänomene Fröhlichs und Hazelhoffs und Kritik ihrer Verfahren zur Messung der Empfindungszeit , 1932 .

[18]  C. Koch,et al.  Recurrent excitation in neocortical circuits , 1995, Science.

[19]  David Whitney,et al.  Temporal facilitation for moving stimuli is independent of changes in direction , 2000, Vision Research.

[20]  Emilio Salinas,et al.  Vector reconstruction from firing rates , 1994, Journal of Computational Neuroscience.

[21]  David Whitney,et al.  The influence of visual motion on perceived position , 2002, Trends in Cognitive Sciences.

[22]  Nestor Caticha,et al.  Computational neurobiology of the flash-lag effect , 2005, Vision Research.

[23]  Romi Nijhawan,et al.  Motion extrapolation in catching , 1994, Nature.

[24]  Kuno Kirschfeld,et al.  The Fröhlich effect: a consequence of the interaction of visual focal attention and metacontrast , 1999, Vision Research.

[25]  M. Lappe,et al.  Neuronal latencies and the position of moving objects , 2001, Trends in Neurosciences.

[26]  Sonja Stork,et al.  Comparing mislocalizations with moving stimuli: The Fröhlich effect, the flash-lag, and representational momentum , 2002 .

[27]  Y Dan,et al.  Motion-Induced Perceptual Extrapolation of Blurred Visual Targets , 2001, The Journal of Neuroscience.

[28]  G Aschersleben,et al.  Localizing the first position of a moving stimulus: The Fröhlich effect and an attention-shifting explanation , 1998, Perception & psychophysics.

[29]  V. Lamme,et al.  The distinct modes of vision offered by feedforward and recurrent processing , 2000, Trends in Neurosciences.

[30]  P. Lennie The physiological basis of variations in visual latency , 1981, Vision Research.

[31]  Gopathy Purushothaman,et al.  Moving ahead through differential visual latency , 1998, Nature.

[32]  Martin A. Giese,et al.  Exact solution of the nonlinear dynamics of recurrent neural mechanisms for direction selectivity , 2002, Neurocomputing.

[33]  J. Cowan,et al.  A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue , 1973, Kybernetik.

[34]  Wolfram Erlhagen,et al.  Internal models for visual perception , 2003, Biological Cybernetics.

[35]  T. Hubbard,et al.  Does representational momentum reflect a distortion of the length or the endpoint of a trajectory? , 2002, Cognition.

[36]  M. Coltheart,et al.  Iconic memory and visible persistence , 1980, Perception & psychophysics.

[37]  G. Schöner,et al.  The distribution of neuronal population activation (DPA) as a tool to study interaction and integration in cortical representations , 1999, Journal of Neuroscience Methods.

[38]  Stanley A. Klein,et al.  Extrapolation or attention shift? , 1995, Nature.

[39]  D. Fitzpatrick Seeing beyond the receptive field in primary visual cortex , 2000, Current Opinion in Neurobiology.

[40]  Stephen Grossberg,et al.  Nonlinear neural networks: Principles, mechanisms, and architectures , 1988, Neural Networks.

[41]  T. Hubbard Cognitive representation of linear motion: Possible direction and gravity effects in judged displacement , 1990, Memory & cognition.

[42]  Friedrich W. Fröhlich,et al.  Über die Messung der Empfindungszeit , 1924, Pflüger's Archiv für die gesamte Physiologie des Menschen und der Tiere.

[43]  Ian M Thornton,et al.  The onset repulsion effect. , 2002, Spatial vision.