Large Area Digital X‐ray Imaging

This chapter reviews amorphous silicon devices for large area flat panel imaging technology. We present Schottky and p-i-n diode image sensors and elaborate on their operating principles, electrical and optoelectronic characteristics including stability, along with the challenges associated with reduction of the dark current. Issues pertinent to sensor-thin film transistor integration for different active matrix pixel architectures for high fill factor imaging arrays are presented along with optimization of materials and processing conditions for reduced threshold voltage shift, reduced parasitics and leakage current, and enhanced mechanical integrity. Extension of the current fabrication processes to low (∼120°C) temperature, enabling fabrication of flexible imaging array (on plastic substrates), is also discussed.

[1]  Peyman Servati,et al.  Modeling of the reverse characteristics of a-Si:H TFTs , 2002 .

[2]  A. Nathan,et al.  Dry etch process optimization for small-area a-Si:H vertical thin film transistor , 2002 .

[3]  Peyman Servati,et al.  Modeling of the static and dynamic behavior of hydrogenated amorphous silicon thin-film transistors , 2002 .

[4]  Arokia Nathan,et al.  Amorphous silicon nitride deposited at 120 °C for organic light emitting display-thin film transistor arrays on plastic substrates , 2002 .

[5]  A. Nathan,et al.  Fabrication of Gd2O2S:Tb based phosphor films coupled with photodetectors for x-ray imaging applications , 2002 .

[6]  Arokia Nathan,et al.  Amorphous silicon technology for large area digital X-ray and optical imaging , 2002, Microelectron. Reliab..

[7]  A. Nathan,et al.  Readout circuit in active pixel sensors in amorphous silicon technology , 2001, IEEE Electron Device Letters.

[8]  A. Nathan,et al.  Amorphous silicon detector and thin film transistor technology for large area imaging of X-rays , 2000, 2000 22nd International Conference on Microelectronics. Proceedings (Cat. No.00TH8400).

[9]  R. Hornsey,et al.  Transduction principles of a-Si:H Schottky diode X-ray image sensors , 2000 .

[10]  A. Nathan,et al.  Intrinsic thin film stresses in multilayered imaging pixels , 2000 .

[11]  A. Nathan,et al.  X-ray phosphor deposition technology for co-integration with amorphous silicon imaging arrays , 2000 .

[12]  F. Zhu,et al.  Optimized indium tin oxide contact for organic light emitting diode applications , 2000 .

[13]  Peyman Servati,et al.  A physically-based SPICE model for the leakage current in a-Si:H TFTs accounting for its dependencies on process, geometrical, and bias conditions , 2000 .

[14]  A. Nathan,et al.  Room‐Temperature Sputter Deposition of Polycrystalline Indium‐Tin Oxide , 1999 .

[15]  B. A. Morgan,et al.  Hole transport via dangling-bond states in amorphous hydrogenated silicon nitride , 1999 .

[16]  R. Hornsey,et al.  Reverse current instabilities in amorphous silicon Schottky diodes: modeling and experiments , 1999 .

[17]  Mario Caron,et al.  Selenium alloys with improved stability for digital x-ray detector applications , 1999, Medical Imaging.

[18]  David C. Paine,et al.  A study of low temperature crystallization of amorphous thin film indium–tin–oxide , 1999 .

[19]  W. Zhao,et al.  Digital radiology using active matrix readout: amplified pixel detector array for fluoroscopy. , 1999, Medical physics.

[20]  Arokia Nathan,et al.  A new approach for rapid evaluation of the potential field in three dimensions , 1999, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[21]  A. Matsuda,et al.  Deposition of ultrapure hydrogenated amorphous silicon , 1999 .

[22]  Savvas G. Chamberlain,et al.  Fabrication of a-Si:H Tfts at 120°C on Flexible Polyimide Substrates , 1999 .

[23]  Sigurd Wagner,et al.  a-Si:H TFTs made on polyimide foil by PE-CVD at 150 °C , 1998 .

[24]  Martin Rhodes,et al.  Introduction to Particle Technology , 1998 .

[25]  S. G. Chamberlain,et al.  Effect of deposition temperature on the structural properties of n+ μc-Si:H films , 1998 .

[26]  Tieer Gu,et al.  Thin-film transistor array technology for high-performance direct-conversion x-ray sensors , 1998, Medical Imaging.

[27]  Safa Kasap,et al.  Metallic electrical contacts to stabilized amorphous selenium for use in X-ray image detectors , 1998 .

[28]  I. Umezu,et al.  Defect formation mechanism during plasma enhanced chemical vapor deposition of undoped a-Si:H , 1998 .

[29]  J A Rowlands,et al.  Digital radiology using active matrix readout of amorphous selenium: detectors with high voltage protection. , 1998, Medical physics.

[30]  A. Nathan,et al.  Process Integration of A-Si:H Schottky Diode and thin Film Transistor for Low-Energy X-Ray Imaging Applications , 1998 .

[31]  S. G. Chamberlain,et al.  Effect of Nh 3 /SiH 4 Gas Ratios of Top Nitride Layer on Stability and Leakage in a-Si:H Thin Film Transistors , 1998 .

[32]  R. Hornsey,et al.  Reverse current transient behavior in amorphous silicon Schottky diodes at low biases , 1997 .

[33]  Richard L. Weisfield,et al.  Improved page-size 127-um-pixel amorphous-silicon image sensor for x-ray diagnostic medical imaging applications , 1997, Medical Imaging.

[34]  J A Rowlands,et al.  Flat-panel digital radiology with amorphous selenium and active-matrix readout. , 1997, Radiographics : a review publication of the Radiological Society of North America, Inc.

[35]  Steven J. Holmes,et al.  Negative photoresists for optical lithography , 1997, IBM J. Res. Dev..

[36]  Jan G. Korvink,et al.  Enhanced multipole acceleration technique for the solution of large Poisson computations , 1996, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[37]  Robert A. Street,et al.  Reverse bias currents in amorphous silicon nip sensors , 1996 .

[38]  R. Hornsey,et al.  Low frequency noise behavior in a-Si:H Schottky barrier devices , 1996 .

[39]  J A Rowlands,et al.  X-ray imaging using amorphous selenium: feasibility of a flat panel self-scanned detector for digital radiology. , 1995, Medical physics.

[40]  Y. Kuo Plasma Etching and Deposition for a‐Si:H Thin Film Transistors , 1995 .

[41]  Richard L. Weisfield,et al.  Two Dimensional Amorphous Silicon Image Sensor Arrays , 1995 .

[42]  A. Masuda,et al.  Relationship between Electrical Conductivity and Charged- Dangling-Bond Density in Nitrogen- and Phosphorus-Doped Hydrogenated Amorphous Silicon , 1994 .

[43]  Sunetra K. Mendis,et al.  CMOS active pixel image sensor , 1994 .

[44]  C. van Berkel,et al.  Reverse current mechanisms in amorphous silicon diodes , 1994 .

[45]  Larry E. Antonuk,et al.  A Large Area, High-Resolution a-Si:H Array for X-Ray Imaging , 1994 .

[46]  T. Tsukada Amorphous silicon thin-film transistors , 1993 .

[47]  M. J. Powell,et al.  Physics of a-Si:H switching diodes , 1993 .

[48]  W. F. V. D. Weg,et al.  Defect and Band Gap Engineering of Amorphous Silicon Solar Cells , 1993 .

[49]  S. Fonash,et al.  Using reverse bias currents to differentiate between bulk degradation and interfacial degradation in hydrogenated amorphous silicon p‐i‐n structures , 1992 .

[50]  T. J. Vink,et al.  Tunneling through thin oxide interface layers in a‐Si:H Schottky diodes , 1992 .

[51]  M. Yoshita,et al.  Doping effect of oxygen or nitrogen impurity in hydrogenated amorphous silicon films , 1991 .

[52]  S. Kim,et al.  Fast capacitance extraction of general three-dimensional structures , 1991, [1991 Proceedings] IEEE International Conference on Computer Design: VLSI in Computers and Processors.

[53]  R. Street,et al.  Hydrogenated amorphous silicon: Index , 1991 .

[54]  Robert A. Street,et al.  Long-time transient conduction in a-Si:H p─i─n devices , 1991 .

[55]  Yue Kuo,et al.  Thin Film Technologies In Active Matrix Addressing System Of LCDs , 1989, Defense, Security, and Sensing.

[56]  S. Tsuda,et al.  Amorphous Silicon Solar Cells Using a-SiC Materials , 1989 .

[57]  L. Greengard The Rapid Evaluation of Potential Fields in Particle Systems , 1988 .

[58]  M. Konagai,et al.  Use of a carbon‐alloyed graded‐band‐gap layer at the p/i interface to improve the photocharacteristics of amorphous silicon alloyed p‐i‐n solar cells prepared by photochemical vapor deposition , 1987 .

[59]  Sadayoshi Hotta,et al.  The Characteristics of Amorphous Silicon TFT and its Application in Liquid Crystal Display , 1987 .

[60]  A. Catalano,et al.  Amorphous silicon p-i-n solar cells with graded interface , 1986 .

[61]  M. J. Powell,et al.  Defect States in Silicon Nitride , 1985 .

[62]  R. Street,et al.  The electrical characterization of surfaces, interfaces and contacts to a-Si:H , 1985 .

[63]  R. Street,et al.  Electronic states at the hydrogenated amorphous silicon/silcon nitride interface , 1984 .

[64]  B. G. Yacobi,et al.  Excess dark currents in a-Si:H P-I-N devices , 1984 .

[65]  Y. Nara,et al.  Proposed vertical-type amorphous-silicon field-effect transistors , 1984, IEEE Electron Device Letters.

[66]  S. Ray,et al.  Properties of tin doped indium oxide thin films prepared by magnetron sputtering , 1983 .

[67]  I. Pereyra,et al.  A pinhole model for metal-insulator-semiconductor solar cells , 1981 .

[68]  Alaa Ghaith,et al.  Amorphous-silicon field-effect device and possible application , 1979 .

[69]  A. Rothwarf,et al.  Metal–Semiconductor Contacts , 1979 .

[70]  D. Staebler,et al.  Reversible conductivity changes in discharge‐produced amorphous Si , 1977 .

[71]  C. R. Crowell,et al.  Normalized thermionic-field (T-F) emission in metal-semiconductor (Schottky) barriers , 1969 .

[72]  S. M. Sze,et al.  Physics of semiconductor devices , 1969 .