Synthesis and characterization of activated carbon-coated SiO2/TiO2−xCx nanoporous composites with high adsorption capability and visible light photocatalytic activity

[1]  Yingle Liu,et al.  Synthesis and photocatalytic activity of hydroxyapatite modified nitrogen-doped TiO2 , 2011 .

[2]  D. Meyer,et al.  Solvothermal preparation of nanocrystalline anatase containing TiO2 and TiO2/SiO2 coating agents for application of photocatalytic treatments , 2011 .

[3]  T. Ihara,et al.  Active properties of thermally excited titanium dioxide/silica composite material for the decomposition of gaseous toluene , 2011 .

[4]  Hector Carreon,et al.  Photocatalytic degradation of organic dyes by mesoporous nanocrystalline anatase , 2011 .

[5]  Hiromi Yamashita,et al.  Graphene Coating of TiO2 Nanoparticles Loaded on Mesoporous Silica for Enhancement of Photocatalytic Activity , 2010 .

[6]  T. Xu,et al.  Visible-light-driven photocatalytic S- and C- codoped meso/nanoporous TiO2 , 2010 .

[7]  Chi-Chang Hu,et al.  Synthesis of activated carbon-surrounded and carbon-doped anatase TiO2 nanocomposites , 2010 .

[8]  Michael K. Seery,et al.  Highly Visible Light Active TiO2-xNx Heterojunction Photocatalysts , 2010 .

[9]  Zhong‐Yong Yuan,et al.  Synthesis and characterization of carbon-modified titania photocatalysts with a hierarchical meso-/macroporous structure. , 2010 .

[10]  T. Xu,et al.  I2-Hydrosol-Seeded Growth of (I2)n-C-Codoped Meso/Nanoporous TiO2 for Visible Light-Driven Photocatalysis , 2010 .

[11]  Y. Ide,et al.  Molecular recognitive photocatalysis driven by the selective adsorption on layered titanates. , 2010, Journal of the American Chemical Society.

[12]  Zhi Lin,et al.  Hydrothermal Synthesis and Morphological Evolution of Mesoporous Titania−Silica , 2009 .

[13]  Keita Takahashi,et al.  Analysis of Surface OH Groups on TiO2 Single Crystal with Polarization Modulation Infrared External Reflection Spectroscopy , 2009 .

[14]  Yubao Zhao,et al.  Preparation and characterization of N–I co-doped nanocrystal anatase TiO2 with enhanced photocatalytic activity under visible-light irradiation , 2009 .

[15]  P. Schmuki,et al.  Semimetallic TiO2 nanotubes. , 2009, Angewandte Chemie.

[16]  A. Manivannan,et al.  Origin of photocatalytic activity of nitrogen-doped TiO2 nanobelts. , 2009, Journal of the American Chemical Society.

[17]  Yi-Ting Liao,et al.  A novel synthesis of carbon-coated anatase nanocrystals showing high adsorption capacity and photocatalytic activity , 2009 .

[18]  Yue Liu,et al.  The fabrication and characterization of novel carbon doped TiO2 nanotubes, nanowires and nanorods with high visible light photocatalytic activity , 2009, Nanotechnology.

[19]  W. Sigmund,et al.  Photocatalytic Carbon‐Nanotube–TiO2 Composites , 2009 .

[20]  Wenxiang Zhang,et al.  Preparation of Titania−Silica Mixed Oxides by a Sol−Gel Route in the Presence of Citric Acid , 2009 .

[21]  A. B. Fuertes,et al.  Chemical and structural properties of carbonaceous products obtained by hydrothermal carbonization of saccharides. , 2009, Chemistry.

[22]  Ji‐Guang Zhang,et al.  Self-assembled TiO2-graphene hybrid nanostructures for enhanced Li-ion insertion. , 2009, ACS nano.

[23]  B. Lee,et al.  Influence of hydroxyl contents on photocatalytic activities of polymorphic titania nanoparticles , 2009 .

[24]  G. Cao,et al.  Carbon monoxide annealed TiO2nanotube array electrodes for efficient biosensor applications , 2009 .

[25]  Keqin Sun,et al.  Efficient fabrication and photocatalytic properties of TiO2 hollow spheres , 2009 .

[26]  M. Durstock,et al.  Fabrication of highly-ordered TiO(2) nanotube arrays and their use in dye-sensitized solar cells. , 2009, Nano letters.

[27]  M. Misra,et al.  Synthesis of carbon nanotube–TiO2 nanotubular material for reversible hydrogen storage , 2008, Nanotechnology.

[28]  Hansong Cheng,et al.  Hydrogen spillover in the context of hydrogen storage using solid-state materials , 2008 .

[29]  Jennifer M. Stokke,et al.  Photocatalytic degradation of methanol using silica-titania composite pellets: effect of pore size on mass transfer and reaction kinetics. , 2008, Environmental science & technology.

[30]  Y. Nakato,et al.  Mechanisms for photooxidation reactions of water and organic compounds on carbon-doped titanium dioxide, as studied by photocurrent measurements , 2008 .

[31]  W. Ho,et al.  Effect of carbon doping on the mesoporous structure of nanocrystalline titanium dioxide and its solar-light-driven photocatalytic degradation of NOx. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[32]  Dong Yang,et al.  Carbon and Nitrogen Co-doped TiO2 with Enhanced Visible-Light Photocatalytic Activity , 2007 .

[33]  T. Tachikawa,et al.  Mechanistic Insight into the TiO2 Photocatalytic Reactions: Design of New Photocatalysts , 2007 .

[34]  C. Lamberti,et al.  (I(2))(n) encapsulation inside TiO(2): a way to tune photoactivity in the visible region. , 2007, Journal of the American Chemical Society.

[35]  Cláudia G. Silva,et al.  Photocatalytic degradation of Chromotrope 2R using nanocrystalline TiO2/activated-carbon composite catalysts , 2007 .

[36]  Z. Zou,et al.  Low temperature preparation and visible light photocatalytic activity of mesoporous carbon-doped crystalline TiO2 , 2007 .

[37]  Nick Serpone,et al.  Is the band gap of pristine TiO(2) narrowed by anion- and cation-doping of titanium dioxide in second-generation photocatalysts? , 2006, The journal of physical chemistry. B.

[38]  C. Minero,et al.  Tailoring the selectivity of Ti-based photocatalysts (TiO2 and microporous ETS-10 and ETS-4) by playing with surface morphology and electronic structure , 2006 .

[39]  F. Mei,et al.  Microstructural study of binary TiO2:SiO2 nanocrystalline thin films , 2006 .

[40]  M. Inagaki,et al.  Carbon-coated anatase for oxidation of methylene blue and NO , 2006 .

[41]  M. Toyoda,et al.  Carbon-modified TiO2 photocatalyst by ethanol carbonisation , 2006 .

[42]  Jiaguo Yu,et al.  Preparation and characterization of SiO2/TiO2 composite microspheres with microporous SiO2 core/mesoporous TiO2 shell , 2005 .

[43]  M. Inagaki,et al.  Carbon-coated anatase: adsorption and decomposition of phenol in water , 2004 .

[44]  E. Wolf,et al.  Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the Fermi level equilibration. , 2004, Journal of the American Chemical Society.

[45]  H. Kisch,et al.  Daylight photocatalysis by carbon-modified titanium dioxide. , 2003, Angewandte Chemie.

[46]  W. Ingler,et al.  Efficient Photochemical Water Splitting by a Chemically Modified n-TiO2 , 2002, Science.

[47]  T. Tilley,et al.  Silica-supported, single-site titanium catalysts for olefin epoxidation. A molecular precursor strategy for control of catalyst structure. , 2002, Journal of the American Chemical Society.

[48]  A. Baiker,et al.  Nature of Active Sites in Sol–Gel TiO2–SiO2 Epoxidation Catalysts , 2001 .

[49]  J. Yates,et al.  Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results , 1995 .

[50]  A. Baiker,et al.  Titania-Silica Mixed Oxides: I. Influence of Sol-Gel and Drying Conditions on Structural Properties , 1995 .

[51]  R. Varadaraj,et al.  FTIR and fluorescence study of linear and Guerbet micelles : effect of electrolyte and temperature on hydrophobe microstructure , 1990 .