Software for molecular docking: a review

[1]  R. Glen,et al.  Molecular recognition of receptor sites using a genetic algorithm with a description of desolvation. , 1995, Journal of molecular biology.

[2]  Zhihai Liu,et al.  Evaluation of the performance of four molecular docking programs on a diverse set of protein‐ligand complexes , 2010, J. Comput. Chem..

[3]  Paul Labute,et al.  Variability in docking success rates due to dataset preparation , 2012, Journal of Computer-Aided Molecular Design.

[4]  Juan Fernández-Recio,et al.  Structural assembly of two-domain proteins by rigid-body docking , 2008, BMC Bioinformatics.

[5]  Hans-Joachim Böhm,et al.  The computer program LUDI: A new method for the de novo design of enzyme inhibitors , 1992, J. Comput. Aided Mol. Des..

[6]  M Karplus,et al.  HOOK: A program for finding novel molecular architectures that satisfy the chemical and steric requirements of a macromolecule binding site , 1994, Proteins.

[7]  D. Rognan,et al.  Protein-based virtual screening of chemical databases. 1. Evaluation of different docking/scoring combinations. , 2000, Journal of medicinal chemistry.

[8]  Richard A. Lewis,et al.  Automated site-directed drug design: the concept of spacer skeletons for primary structure generation , 1989, Proceedings of the Royal Society of London. B. Biological Sciences.

[9]  M. Lawrence,et al.  CLIX: A search algorithm for finding novel ligands capable of binding proteins of known three‐dimensional structure , 1992, Proteins.

[10]  Mark A. Murcko,et al.  GenStar: A method for de novo drug design , 1993, J. Comput. Aided Mol. Des..

[11]  D. Goodsell,et al.  Automated docking of substrates to proteins by simulated annealing , 1990, Proteins.

[12]  Ruben Abagyan,et al.  Nuclear hormone receptor targeted virtual screening. , 2003, Journal of medicinal chemistry.

[13]  M E Pique,et al.  Definition of the interaction domain for cytochrome c on cytochrome c oxidase. III. Prediction of the docked complex by a complete, systematic search. , 1999, The Journal of biological chemistry.

[14]  Dan Li,et al.  Comprehensive evaluation of ten docking programs on a diverse set of protein-ligand complexes: the prediction accuracy of sampling power and scoring power. , 2016, Physical chemistry chemical physics : PCCP.

[15]  G. Hammes Multiple conformational changes in enzyme catalysis. , 2002, Biochemistry.

[16]  A. Caflisch,et al.  Discovery of ZAP70 inhibitors by high-throughput docking into a conformation of its kinase domain generated by molecular dynamics. , 2013, Bioorganic & medicinal chemistry letters.

[17]  P Willett,et al.  Development and validation of a genetic algorithm for flexible docking. , 1997, Journal of molecular biology.

[18]  Ruben Abagyan,et al.  FRODOCK: a new approach for fast rotational protein-protein docking , 2009, Bioinform..

[19]  A. Bonvin,et al.  The HADDOCK web server for data-driven biomolecular docking , 2010, Nature Protocols.

[20]  C. Dominguez,et al.  HADDOCK: a protein-protein docking approach based on biochemical or biophysical information. , 2003, Journal of the American Chemical Society.

[21]  Ruth Nussinov,et al.  PatchDock and SymmDock: servers for rigid and symmetric docking , 2005, Nucleic Acids Res..

[22]  Haim J. Wolfson,et al.  ParaDock: a flexible non-specific DNA—rigid protein docking algorithm , 2011, Nucleic acids research.

[23]  M. Murcko,et al.  GroupBuild: a fragment-based method for de novo drug design. , 1993, Journal of medicinal chemistry.

[24]  I. Kuntz,et al.  Structure-based discovery of inhibitors of thymidylate synthase. , 1993, Science.

[25]  Simon Fong,et al.  PSOVina: The hybrid particle swarm optimization algorithm for protein-ligand docking , 2015, J. Bioinform. Comput. Biol..

[26]  R. Faast,et al.  Efficient Generation of α(1,3) Galactosyltransferase Knockout Porcine Fetal Fibroblasts for Nuclear Transfer , 2002, Transgenic Research.

[27]  Vigneshwaran Namasivayam,et al.  Research Article: pso@autodock: A Fast Flexible Molecular Docking Program Based on Swarm Intelligence , 2007, Chemical biology & drug design.

[28]  J M Blaney,et al.  A geometric approach to macromolecule-ligand interactions. , 1982, Journal of molecular biology.

[29]  F E Cohen,et al.  Structure-based inhibitor design by using protein models for the development of antiparasitic agents. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[30]  Pieter F. W. Stouten,et al.  Fast prediction and visualization of protein binding pockets with PASS , 2000, J. Comput. Aided Mol. Des..

[31]  Ron Elber,et al.  PIE—Efficient filters and coarse grained potentials for unbound protein–protein docking , 2010, Proteins.

[32]  Shiow-Fen Hwang,et al.  SODOCK: Swarm optimization for highly flexible protein–ligand docking , 2007, J. Comput. Chem..

[33]  J. A. Grant,et al.  Gaussian docking functions. , 2003, Biopolymers.

[34]  Daisuke Kihara,et al.  Protein-protein docking using region-based 3D Zernike descriptors , 2009, BMC Bioinformatics.

[35]  D. Koshland,et al.  CORRELATION OF STRUCTURE AND FUNCTION IN ENZYME ACTION. , 1963, Science.

[36]  M. Sternberg,et al.  Rapid refinement of protein interfaces incorporating solvation: application to the docking problem. , 1998, Journal of molecular biology.

[37]  Yu Liu,et al.  FIPSDock: A new molecular docking technique driven by fully informed swarm optimization algorithm , 2013, J. Comput. Chem..

[38]  D. Levitt,et al.  POCKET: a computer graphics method for identifying and displaying protein cavities and their surrounding amino acids. , 1992, Journal of molecular graphics.

[39]  Kenji Onodera,et al.  Evaluations of Molecular Docking Programs for Virtual Screening , 2007, J. Chem. Inf. Model..

[40]  Wim G. J. Hol,et al.  In search of new lead compounds for trypanosomiasis drug design: A protein structure-based linked-fragment approach , 1992, J. Comput. Aided Mol. Des..

[41]  Jarrod A Smith,et al.  TagDock: an efficient rigid body docking algorithm for oligomeric protein complex model construction and experiment planning. , 2013, Biochemistry.

[42]  Ajay N. Jain Surflex: fully automatic flexible molecular docking using a molecular similarity-based search engine. , 2003, Journal of medicinal chemistry.

[43]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[44]  Jianpeng Ma,et al.  CHARMM: The biomolecular simulation program , 2009, J. Comput. Chem..

[45]  David W. Ritchie,et al.  Ultra-fast FFT protein docking on graphics processors , 2010, Bioinform..

[46]  Peter Willett,et al.  GAPDOCK: A genetic algorithm approach to protein docking in CAPRI round 1 , 2003, Proteins.

[47]  S. Yue Distance-constrained molecular docking by simulated annealing. , 1990, Protein Engineering.

[48]  C. Venkatachalam,et al.  LigandFit: a novel method for the shape-directed rapid docking of ligands to protein active sites. , 2003, Journal of molecular graphics & modelling.

[49]  A. Itai,et al.  Confirmation of usefulness of a structure construction program based on three-dimensional receptor structure for rational lead generation. , 1993, Journal of medicinal chemistry.

[50]  Alfonso Valencia,et al.  Towards the prediction of protein interaction partners using physical docking , 2011, Molecular systems biology.

[51]  N. Metropolis,et al.  The Monte Carlo method. , 1949, Journal of the American Statistical Association.

[52]  Maria Kontoyianni,et al.  Evaluation of docking performance: comparative data on docking algorithms. , 2004, Journal of medicinal chemistry.

[53]  C. Bajaj,et al.  F2Dock: fast Fourier protein-protein docking. , 2011, IEEE/ACM transactions on computational biology and bioinformatics.

[54]  J. Tainer,et al.  Screening a peptidyl database for potential ligands to proteins with side‐chain flexibility , 1998, Proteins.

[55]  S Doniach,et al.  Computer simulation of antibody binding specificity , 1993, Proteins.

[56]  I. Kuntz,et al.  Protein docking and complementarity. , 1991, Journal of molecular biology.

[57]  Finn Drabløs,et al.  Protein Alpha Shape (PAS) Dock: A new gaussian-based score function suitable for docking in homology modelled protein structures , 2006, J. Comput. Aided Mol. Des..

[58]  D. Goodsell,et al.  Automated docking to multiple target structures: Incorporation of protein mobility and structural water heterogeneity in AutoDock , 2002, Proteins.

[59]  W. Howe,et al.  Computer design of bioactive molecules: A method for receptor‐based de novo ligand design , 1991, Proteins.

[60]  R Nussinov,et al.  Geometrical docking algorithms. A practical approach. , 2000, Methods in molecular biology.

[61]  Mieczyslaw Torchala,et al.  SwarmDock: a server for flexible protein-protein docking , 2013, Bioinform..

[62]  Z. Weng,et al.  ZDOCK: An initial‐stage protein‐docking algorithm , 2003, Proteins.

[63]  Samuel L. DeLuca,et al.  Fully Flexible Docking of Medium Sized Ligand Libraries with RosettaLigand , 2015, PloS one.

[64]  Miriam Eisenstein,et al.  Electrostatics in protein–protein docking , 2002, Protein science : a publication of the Protein Society.

[65]  Marc F Lensink,et al.  Docking, scoring, and affinity prediction in CAPRI , 2013, Proteins.

[66]  Yuri Matsuzaki,et al.  MEGADOCK: An All-to-All Protein-Protein Interaction Prediction System Using Tertiary Structure Data , 2013, Protein and peptide letters.

[67]  김삼묘,et al.  “Bioinformatics” 특집을 내면서 , 2000 .

[68]  S. Kim,et al.  "Soft docking": matching of molecular surface cubes. , 1991, Journal of molecular biology.

[69]  M. Karplus,et al.  Multiple copy simultaneous search and construction of ligands in binding sites: application to inhibitors of HIV-1 aspartic proteinase. , 1993, Journal of medicinal chemistry.

[70]  R. Laskowski SURFNET: a program for visualizing molecular surfaces, cavities, and intermolecular interactions. , 1995, Journal of molecular graphics.

[71]  R. Abagyan,et al.  Soft protein–protein docking in internal coordinates , 2002, Protein science : a publication of the Protein Society.

[72]  E. Katchalski‐Katzir,et al.  Molecular surface recognition: determination of geometric fit between proteins and their ligands by correlation techniques. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[73]  E. Jaeger,et al.  Comparison of automated docking programs as virtual screening tools. , 2005, Journal of Medicinal Chemistry.

[74]  William J. Allen,et al.  DOCK 6: Impact of new features and current docking performance , 2015, J. Comput. Chem..

[75]  Carles Pons,et al.  Present and future challenges and limitations in protein–protein docking , 2010, Proteins.

[76]  R. Bruccoleri,et al.  On the attribution of binding energy in antigen-antibody complexes McPC 603, D1.3, and HyHEL-5. , 1989, Biochemistry.

[77]  L. Krippahl,et al.  BiGGER: A new (soft) docking algorithm for predicting protein interactions , 2000, Proteins.

[78]  Yuri Matsuzaki,et al.  MEGADOCK 4.0: an ultra–high-performance protein–protein docking software for heterogeneous supercomputers , 2014, Bioinform..

[79]  M J Sternberg,et al.  A continuum model for protein-protein interactions: application to the docking problem. , 1995, Journal of molecular biology.

[80]  Zhiping Weng,et al.  Accelerating Protein Docking in ZDOCK Using an Advanced 3D Convolution Library , 2011, PloS one.

[81]  Adrian A Canutescu,et al.  A graph‐theory algorithm for rapid protein side‐chain prediction , 2003, Protein science : a publication of the Protein Society.

[82]  Vishwesh Venkatraman,et al.  Flexible protein docking refinement using pose‐dependent normal mode analysis , 2012, Proteins.

[83]  Chaok Seok,et al.  GalaxyDock: Protein-Ligand Docking with Flexible Protein Side-chains , 2012, J. Chem. Inf. Model..

[84]  Eleanor J. Gardiner,et al.  Protein docking using a genetic algorithm , 2001, Proteins.

[85]  Jin Li,et al.  On Evaluating Molecular-Docking Methods for Pose Prediction and Enrichment Factors , 2006, J. Chem. Inf. Model..

[86]  Dariusz Plewczynski,et al.  Can we trust docking results? Evaluation of seven commonly used programs on PDBbind database , 2011, J. Comput. Chem..

[87]  J. S. Dixon,et al.  Evaluation of the CASP2 docking section , 1997, Proteins.

[88]  M. Karplus,et al.  Conformational sampling using high‐temperature molecular dynamics , 1990, Biopolymers.

[89]  Robert P. Sheridan,et al.  FLOG: A system to select ‘quasi-flexible’ ligands complementary to a receptor of known three-dimensional structure , 1994, J. Comput. Aided Mol. Des..

[90]  Xavier Barril,et al.  rDock: A Fast, Versatile and Open Source Program for Docking Ligands to Proteins and Nucleic Acids , 2014, PLoS Comput. Biol..

[91]  Gennady Verkhivker,et al.  Deciphering common failures in molecular docking of ligand-protein complexes , 2000, J. Comput. Aided Mol. Des..

[92]  Dima Kozakov,et al.  How good is automated protein docking? , 2013, Proteins.

[93]  N. Metropolis,et al.  The Monte Carlo method. , 1949 .

[94]  D. Ritchie,et al.  Protein docking using spherical polar Fourier correlations , 2000, Proteins.

[95]  A. Leach,et al.  Ligand docking to proteins with discrete side-chain flexibility. , 1994, Journal of molecular biology.

[96]  Michel F Sanner,et al.  FLIPDock: Docking flexible ligands into flexible receptors , 2007, Proteins.

[97]  Victoria A. Roberts,et al.  DOT2: Macromolecular docking with improved biophysical models , 2013, J. Comput. Chem..

[98]  W Patrick Walters,et al.  A detailed comparison of current docking and scoring methods on systems of pharmaceutical relevance , 2004, Proteins.

[99]  Johan Desmet,et al.  The dead-end elimination theorem and its use in protein side-chain positioning , 1992, Nature.

[100]  Jun Sun,et al.  A New Approach for Flexible Molecular Docking Based on Swarm Intelligence , 2015 .

[101]  A. Debnath,et al.  Structure-based identification of small molecule antiviral compounds targeted to the gp41 core structure of the human immunodeficiency virus type 1. , 1999, Journal of medicinal chemistry.

[102]  I D Kuntz,et al.  Inhibition of the fusion-inducing conformational change of influenza hemagglutinin by benzoquinones and hydroquinones. , 1993, Biochemistry.

[103]  C. E. Peishoff,et al.  A critical assessment of docking programs and scoring functions. , 2006, Journal of medicinal chemistry.

[104]  Genki Terashi,et al.  The SKE‐DOCK server and human teams based on a combined method of shape complementarity and free energy estimation , 2007, Proteins.

[105]  Luhua Lai,et al.  SDOCK: A global protein‐protein docking program using stepwise force‐field potentials , 2011, J. Comput. Chem..

[106]  Nan Li,et al.  SOFTDOCK application to protein–protein interaction benchmark and CAPRI , 2007, Proteins.

[107]  Didier Rognan,et al.  ConsDock: A new program for the consensus analysis of protein–ligand interactions , 2002, Proteins.

[108]  Stephen R. Comeau,et al.  PIPER: An FFT‐based protein docking program with pairwise potentials , 2006, Proteins.

[109]  Richard A. Lewis,et al.  Automated site-directed drug design : the formation of molecular templates in primary structure generation , 1989, Proceedings of the Royal Society of London. B. Biological Sciences.

[110]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[111]  P. Goodford A computational procedure for determining energetically favorable binding sites on biologically important macromolecules. , 1985, Journal of medicinal chemistry.

[112]  David Lagorce,et al.  MS-DOCK: Accurate multiple conformation generator and rigid docking protocol for multi-step virtual ligand screening , 2008, BMC Bioinformatics.

[113]  Yuri Matsuzaki,et al.  Protein-protein Interaction Network Prediction by Using Rigid-Body Docking Tools: Application to Bacterial Chemotaxis , 2013, Protein and peptide letters.

[114]  Ruben Abagyan,et al.  Detailed ab initio prediction of lysozyme–antibody complex with 1.6 Å accuracy , 1994, Nature Structural Biology.

[115]  S. Schreiber,et al.  Structure-based design of a cyclophilin-calcineurin bridging ligand. , 1993, Science.

[116]  Arthur J. Olson,et al.  AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading , 2009, J. Comput. Chem..

[117]  L. T. Ten Eyck,et al.  Protein docking using continuum electrostatics and geometric fit. , 2001, Protein engineering.

[118]  Zhiping Weng,et al.  ZDOCK and RDOCK performance in CAPRI rounds 3, 4, and 5 , 2005, Proteins.

[119]  C Oseroff,et al.  On the interaction of promiscuous antigenic peptides with different DR alleles. Identification of common structural motifs. , 1991, Journal of immunology.

[120]  Ruben Abagyan,et al.  Comparative study of several algorithms for flexible ligand docking , 2003, J. Comput. Aided Mol. Des..

[121]  Thomas Lengauer,et al.  A fast flexible docking method using an incremental construction algorithm. , 1996, Journal of molecular biology.

[122]  Hans-Peter Lenhof,et al.  BALL-rapid software prototyping in computational molecular biology , 2000, Bioinform..

[123]  M. Karplus,et al.  Functionality maps of binding sites: A multiple copy simultaneous search method , 1991, Proteins.

[124]  Mihaly Mezei,et al.  A new method for mapping macromolecular topography. , 2003, Journal of molecular graphics & modelling.

[125]  Rezaul Alam Chowdhury,et al.  F2Dock: Fast Fourier Protein-Protein Docking , 2011, IEEE ACM Trans. Comput. Biol. Bioinform..

[126]  Xu Yang,et al.  MoDock: A multi-objective strategy improves the accuracy for molecular docking , 2015, Algorithms for Molecular Biology.

[127]  Thomas Stützle,et al.  Empirical Scoring Functions for Advanced Protein-Ligand Docking with PLANTS , 2009, J. Chem. Inf. Model..

[128]  Haim J. Wolfson,et al.  Memdock: an α-helical membrane protein docking algorithm , 2016, Bioinform..

[129]  Harald Servat,et al.  Cell-Dock: high-performance protein-protein docking , 2012, Bioinform..

[130]  Matthew P. Repasky,et al.  Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. , 2004, Journal of medicinal chemistry.

[131]  S. Balaz,et al.  A practical approach to docking of zinc metalloproteinase inhibitors. , 2004, Journal of molecular graphics & modelling.

[132]  D Fischer,et al.  Surface motifs by a computer vision technique: Searches, detection, and implications for protein–ligand recognition , 1993, Proteins.

[133]  Didier Rognan,et al.  Comparative evaluation of eight docking tools for docking and virtual screening accuracy , 2004, Proteins.