Network-wide anomaly detection via the Dirichlet process

Statistical anomaly detection techniques provide the next layer of cyber-security defences below traditional signature-based approaches. This article presents a scalable, principled, probability-based technique for detecting outlying connectivity behaviour within a directed interaction network such as a computer network. Independent Bayesian statistical models are fit to each message recipient in the network using the Dirichlet process, which provides a tractable, conjugate prior distribution for an unknown discrete probability distribution. The method is shown to successfully detect a red team attack in authentication data obtained from the enterprise network of Los Alamos National Laboratory.