Cascading Customized Naïve Bayes Couple

Naive Bayes (NB) is an efficient and effective classifier in many cases However, NB might suffer from poor performance when its conditional independence assumption is violated While most recent research focuses on improving NB by alleviating the conditional independence assumption, we propose a new Meta learning technique to scale up NB by assuming an altered strategy to the traditional Cascade Learning (CL) The new Meta learning technique is more effective than the traditional CL and other Meta learning techniques such as Bagging and Boosting techniques while maintaining the efficiency of Naive Bayes learning.

[1]  Geoffrey E. Hinton,et al.  Adaptive Mixtures of Local Experts , 1991, Neural Computation.

[2]  Pat Langley,et al.  An Analysis of Bayesian Classifiers , 1992, AAAI.

[3]  Geoffrey I. Webb,et al.  Not So Naive Bayes: Aggregating One-Dependence Estimators , 2005, Machine Learning.

[4]  Pat Langley,et al.  Induction of Recursive Bayesian Classifiers , 1993, ECML.

[5]  Charles Elkan,et al.  Boosting and Naive Bayesian learning , 1997 .

[6]  Pedro M. Domingos,et al.  On the Optimality of the Simple Bayesian Classifier under Zero-One Loss , 1997, Machine Learning.

[7]  Nir Friedman,et al.  Bayesian Network Classifiers , 1997, Machine Learning.

[8]  Eric Bauer,et al.  An Empirical Comparison of Voting Classification Algorithms: Bagging, Boosting, and Variants , 1999, Machine Learning.

[9]  Nitesh V. Chawla,et al.  SPECIAL ISSUE ON LEARNING FROM IMBALANCED DATA SETS , 2004 .

[10]  Christian Lebiere,et al.  The Cascade-Correlation Learning Architecture , 1989, NIPS.

[11]  David R. Karger,et al.  Tackling the Poor Assumptions of Naive Bayes Text Classifiers , 2003, ICML.

[12]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[13]  R. D'amours,et al.  Automated radioxenon monitoring for the comprehensive nuclear-test-ban treaty in two distinctive locations: Ottawa and Tahiti. , 2005, Journal of environmental radioactivity.

[14]  Ian Witten,et al.  Data Mining , 2000 .

[15]  Pat Langley,et al.  Induction of Selective Bayesian Classifiers , 1994, UAI.

[16]  Ian H. Witten,et al.  Data mining: practical machine learning tools and techniques, 3rd Edition , 1999 .

[17]  David H. Wolpert,et al.  Stacked generalization , 1992, Neural Networks.

[18]  Yoav Freund,et al.  A Short Introduction to Boosting , 1999 .

[19]  Pedro M. Domingos,et al.  Beyond Independence: Conditions for the Optimality of the Simple Bayesian Classifier , 1996, ICML.

[20]  Janez Demsar,et al.  Statistical Comparisons of Classifiers over Multiple Data Sets , 2006, J. Mach. Learn. Res..

[21]  Pavel B. Brazdil,et al.  Machine Learning: ECML-93 , 1993, Lecture Notes in Computer Science.

[22]  Robert A. Jacobs,et al.  Hierarchical Mixtures of Experts and the EM Algorithm , 1993, Neural Computation.

[23]  Geoffrey I. Webb,et al.  MultiBoosting: A Technique for Combining Boosting and Wagging , 2000, Machine Learning.

[24]  Liangxiao Jiang,et al.  Weightily averaged one-dependence estimators , 2006 .

[25]  Ian H. Witten,et al.  Issues in Stacked Generalization , 2011, J. Artif. Intell. Res..

[26]  João Gama,et al.  Cascade Generalization , 2000, Machine Learning.

[27]  Kai Ming Ting,et al.  A Study of AdaBoost with Naive Bayesian Classifiers: Weakness and Improvement , 2003, Comput. Intell..

[28]  Ron Kohavi,et al.  Scaling Up the Accuracy of Naive-Bayes Classifiers: A Decision-Tree Hybrid , 1996, KDD.

[29]  Leo Breiman,et al.  Bagging Predictors , 1996, Machine Learning.

[30]  Liangxiao Jiang,et al.  Hidden Naive Bayes , 2005, AAAI.

[31]  Geoffrey I. Webb,et al.  Efficient lazy elimination for averaged one-dependence estimators , 2006, ICML.

[32]  Jeremiah D. Sullivan,et al.  The Comprehensive Test Ban Treaty , 1998 .