Online correction of drift in structural identification using artificial white noise observations and an unscented Kalman Filter

[1]  A. Smyth,et al.  Multi-rate Kalman filtering for the data fusion of displacement and acceleration response measurement in dynamic system monitoring , 2007 .

[2]  Julian J. Bommer,et al.  Processing of strong-motion accelerograms: needs, options and consequences , 2005 .

[3]  F. Moschas,et al.  Phase effect in time-stamped accelerometer measurements - an experimental approach , 2012 .

[4]  Costas Papadimitriou,et al.  Joint input-response estimation for structural systems based on reduced-order models and vibration data from a limited number of sensors , 2012 .

[5]  G. Fraraccio,et al.  Identification and Damage Detection in Structures Subjected to Base Excitation , 2008 .

[6]  A Bucharles,et al.  Flexible aircraft model identification for control law design , 2002 .

[7]  Eleni Chatzi,et al.  The unscented Kalman filter and particle filter methods for nonlinear structural system identification with non‐collocated heterogeneous sensing , 2009 .

[8]  Joel P. Conte,et al.  Damage identification study of a seven-story full-scale building slice tested on the UCSD-NEES shake table , 2010 .

[9]  Simo Särkkä,et al.  Unscented Rauch-Tung-Striebel Smoother , 2008, IEEE Trans. Autom. Control..

[10]  Stathis C. Stiros,et al.  Errors in velocities and displacements deduced from accelerographs: An approach based on the theory of error propagation , 2008 .

[11]  Alberto Corigliano,et al.  Impact induced composite delamination: state and parameter identification via joint and dual extended Kalman filters , 2005 .

[12]  Eleni Chatzi,et al.  Experimental application of on-line parametric identification for nonlinear hysteretic systems with model uncertainty , 2010 .

[13]  Richard W. Longman,et al.  On‐line identification of non‐linear hysteretic structural systems using a variable trace approach , 2001 .

[14]  Filippo Ubertini,et al.  System identification of a super high-rise building via astochastic subspace approach. , 2011 .

[15]  C. Striebel,et al.  On the maximum likelihood estimates for linear dynamic systems , 1965 .

[16]  Billie F. Spencer,et al.  Distributed computing strategy for structural health monitoring , 2006 .

[17]  Lambros S. Katafygiotis,et al.  Substructure Identification and Health Monitoring Using Noisy Response Measurements Only , 2006, Comput. Aided Civ. Infrastructure Eng..

[18]  Hoon Sohn,et al.  Autonomous dynamic displacement estimation from data fusion of acceleration and intermittent displacement measurements , 2014 .

[19]  Filippo Ubertini,et al.  New Stochastic Subspace Approach for System Identification and Its Application to Long-Span Bridges , 2013 .

[20]  James B. Rawlings,et al.  Estimation of the disturbance structure from data using semidefinite programming and optimal weighting , 2009, Autom..

[21]  A. Benveniste,et al.  In-Flight Vibration Monitoring of Aeronautical Structures , 2007, IEEE Control Systems.

[22]  Elaine Martin,et al.  Particle filters for state and parameter estimation in batch processes , 2005 .

[23]  Costas Papadimitriou,et al.  Fatigue predictions in entire body of metallic structures from a limited number of vibration sensors using Kalman filtering , 2011 .

[24]  Stathis C. Stiros,et al.  Experimental Assessment of the Accuracy of GPS and RTS for the Determination of the Parameters of Oscillation of Major Structures , 2008, Comput. Aided Civ. Infrastructure Eng..

[25]  Stathis C. Stiros,et al.  Errors Introduced by Fluctuations in the Sampling Rate of Automatically Recording Instruments: Experimental and Theoretical Approach , 2008 .