The Unique Continuation Property of Sublinear Equations

We derive the unique continuation property of a class of semi-linear elliptic equations with non-Lipschitz nonlinearities. The simplest type of equations to which our results apply is given as $-\Delta u = |u|^{\sigma-1} u$ in a domain $\Omega \subset \mathbb{R}^N$, with $0 \le \sigma <1$. Despite the sublinear character of the nonlinear term, we prove that if a solution vanishes in an open subset of $\Omega$, then it vanishes necessarily in the whole $\Omega$. We then extend the result to equations with variable coefficients operators and inhomogeneous right-hand side.

[1]  F. Lin,et al.  Monotonicity properties of variational integrals, ap weights and unique continuation , 1986 .

[2]  Igor Kukavica,et al.  Quantitative uniqueness for second-order elliptic operators , 1998 .

[3]  N. Garofalo,et al.  New monotonicity formulas and the optimal regularity in the Signorini problem with variable coefficients , 2014 .

[4]  F. Lin,et al.  Unique continuation for elliptic operators: A geometric‐variational approach , 1987 .

[5]  D. Tataru,et al.  Recent Results on Unique Continuation for Second Order Elliptic Equations , 2001 .

[6]  Carleman Estimates and Absence of Embedded Eigenvalues , 2005, math-ph/0508052.

[7]  D. Gilbarg,et al.  Elliptic Partial Differential Equa-tions of Second Order , 1977 .

[8]  J. Vázquez The Porous Medium Equation , 2006 .

[9]  F. Lin,et al.  Elliptic Partial Differential Equations , 2000 .

[10]  M. Mitrea,et al.  Singular Integrals and Elliptic Boundary Problems on Regular Semmes–Kenig–Toro Domains , 2009 .

[11]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[12]  E. Parini,et al.  Existence, unique continuation and symmetry of least energy nodal solutions to sublinear Neumann problems , 2014, 1401.7182.

[13]  Elias M. Stein,et al.  Unique continuation and absence of positive eigenvalues for Schrodinger operators , 1985 .

[14]  Zhaoli Liu,et al.  Compactness results for Schrödinger equations with asymptotically linear terms , 2006 .

[15]  M. Willem,et al.  On An Elliptic Equation With Concave and Convex Nonlinearities , 1995 .