Genetic structure of populations of Alternaria brassicicola suggests the occurrence of sexual recombination.

Substantial polymorphism was detected between isolates from five populations of Alternaria brassicicola attacking Cakile maritima along the New South Wales coast of Australia, with a maximum of two genotypes being shared between population pairs. Of ten pair-wise population comparisons, six had no pathogen genotypes in common; only one genotype occurred five times, and most (93 %) were found only once. Although an UPGMA based on Nei's measure of genetic distance separated the five populations, a cluster analysis using individual isolates failed to group them according to population, indicating significant gene flow. An analysis of molecular variance indicated ca 14% of the variation occurred between populations, representing moderate population differentiation over the spatial scale of the study. Tests of the relative contribution of clonality and sexual recombination indicated low, albeit significant levels of linkage disequilibrium in all populations. The level of linkage disequilibrium, and the high genotype diversity, provides support for the contention that a hitherto unidentified sexual stage might be a significant factor in the life-cycle of A. brassicicola.

[1]  B. McDonald,et al.  The global genetic structure of the wheat pathogen Mycosphaerella graminicola is characterized by high nuclear diversity, low mitochondrial diversity, regular recombination, and gene flow. , 2003, Fungal genetics and biology : FG & B.

[2]  R. Papa,et al.  Population genetic structure of Pyrenophora teresDrechs. the causal agent of net blotch in Sardinian landraces of barley (Hordeum vulgare L.) , 2003, Theoretical and Applied Genetics.

[3]  J. Bever,et al.  LOCAL ADAPTATION IN THE LINUM MARGINALE—MELAMPSORA LINI HOST‐PATHOGEN INTERACTION , 2002, Evolution; international journal of organic evolution.

[4]  J. Burdon,et al.  Evolution of gene‐for‐gene systems in metapopulations: the effect of spatial scale of host and pathogen dispersal , 2002 .

[5]  C. Brubaker,et al.  Detection of genetic variation in Alternaria brassicicola using AFLP fingerprinting , 2002 .

[6]  J. Burdon,et al.  Vertical disease transmission in the Cakile-Alternaria host-pathogen interaction , 2001 .

[7]  J. Burdon,et al.  Short‐term epidemic dynamics in the Cakile maritima–Alternaria brassicicola host–pathogen association , 2001 .

[8]  M. Aradhya,et al.  Genetic variability in the pistachio late blight fungus, Alternaria alternata , 2001 .

[9]  A. Burt,et al.  Indices of multilocus linkage disequilibrium , 2001 .

[10]  A. Young,et al.  An analysis of mating structure in populations of the annual sea rocket, Cakile maritima (Brassicaceae) , 2000 .

[11]  J. Burdon,et al.  Effect of resistance variation in a natural plant host–pathogen metapopulation on disease dynamics , 2000 .

[12]  E. Feil,et al.  Population structure and evolutionary dynamics of pathogenic bacteria , 2000, BioEssays : news and reviews in molecular, cellular and developmental biology.

[13]  P. Morris,et al.  Genetic diversity of Alternaria alternata isolated from tomato in California assessed using RAPDs , 2000 .

[14]  B. McDonald,et al.  Genetic Structure of Rhynchosporium secalis in Australia. , 1999, Phytopathology.

[15]  J. Burdon,et al.  RESISTANCE AND VIRULENCE STRUCTURE IN TWO LINUM MARGINALE‐MELAMPSORA LINI HOST‐PATHOGEN METAPOPULATIONS WITH DIFFERENT MATING SYSTEMS , 1999, Evolution; international journal of organic evolution.

[16]  J. Burdon,et al.  Spatial and Temporal Patterns in Coevolving Plant and Pathogen Associations , 1999, The American Naturalist.

[17]  J. Burdon,et al.  Sources and patterns of diversity in plant-pathogenic fungi. , 1997, Phytopathology.

[18]  J. Rotem The Genus Alternaria: Biology, Epidemiology, and Pathogenicity , 1997 .

[19]  T. Elmqvist,et al.  The Role of Race Specific Resistance in Natural Plant Populations , 1996 .

[20]  B. McDonald,et al.  Sexual reproduction plays a major role in the genetic structure of populations of the fungus Mycosphaerella graminicola. , 1996, Genetics.

[21]  J. Burdon,et al.  The population genetic structure of the rust fungus Melampsora lini as revealed by pathogenicity, isozyme and RFLP markers , 1995 .

[22]  B. Cohen,et al.  Panglobal distribution of a single clonal lineage of the Irish potato famine fungus. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[23]  A. Spiers,et al.  Comparative studies of the poplar rusts Melampsora medusae, M. larici-populina and their interspecific hybrid M. medusae-populina. , 1994 .

[24]  N. Doke,et al.  Nuclear Ribosomal DNA as a Probe for Genetic Variability in the Japanese Pear Pathotype of Alternaria alternata , 1993, Applied and environmental microbiology.

[25]  J. M. Smith,et al.  How clonal are bacteria? , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[26]  W. Powell,et al.  DNA fingerprinting and analysis of population structure in the chestnut blight fungus, Cryphonectria parasitica. , 1992, Genetics.

[27]  L. Excoffier,et al.  Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. , 1992, Genetics.

[28]  Johann N. Bruhn,et al.  The fungus Armillaria bulbosa is among the largest and oldest living organisms , 1992, Nature.

[29]  L. C. Davidse,et al.  Population genetic structure of Phytophthora infestans in the Netherlands , 1991 .

[30]  James K. M. Brown,et al.  Structure and evolution of a population of Erysiphe graminis f.sp. hordei , 1990 .

[31]  C. Brasier China and the origins of Dutch elm disease: an appraisal , 1990 .

[32]  M. Nei Molecular Evolutionary Genetics , 1987 .

[33]  F. Humpherson-Jones The incidence of Alternaria spp. and Leptosphaeria maculans in commercial brassica seed in the United Kingdom. , 1985 .

[34]  Burdon Jj,et al.  Isozyme and virulence variation in asexually reproducing populations of Puccinia graminis and Puccinia recondita on wheat. , 1985 .

[35]  M. Parker LOCAL POPULATION DIFFERENTIATION FOR COMPATIBILITY IN AN ANNUAL LEGUME AND ITS HOST‐SPECIFIC FUNGAL PATHOGEN , 1985, Evolution; international journal of organic evolution.

[36]  J. Burdon,et al.  Interactions between Avena and Puccinia species. I: The wild hosts: Avena barbata Pott ex Link, A. fatua L. A. ludoviciana Durieu , 1983 .

[37]  J. Burdon,et al.  Interactions between Avena and Puccinia species II. The pathogens: Puccinia coronata Cda and P. graminis Pers. f.sp. avenae Eriks. & Henn. , 1983 .

[38]  M. Feldman,et al.  Multilocus Structure of Natural Populations of HORDEUM SPONTANEUM. , 1980, Genetics.

[39]  P. Keddy Population ecology in an environmental mosaic: Cakile edentula on a gravel bar , 1980 .

[40]  M. Nei,et al.  Estimation of average heterozygosity and genetic distance from a small number of individuals. , 1978, Genetics.

[41]  M. Nei Analysis of gene diversity in subdivided populations. , 1973, Proceedings of the National Academy of Sciences of the United States of America.

[42]  Rong‐Cai Yang,et al.  PopGene32, Microsoft windows-based freeware for population genetic analysis. Version 1.32 , 2000 .

[43]  Jw Taylor,et al.  THE EVOLUTION OF ASEXUAL FUNGI: Reproduction, Speciation and Classification. , 1999, Annual review of phytopathology.

[44]  R. Yang,et al.  POPGENE Version 1.32 Microsoft Windows-based freeware for populations genetic analysis. University of Alberta, Edmonton , 1999 .

[45]  M. Milgroom Recombination and the multilocus structure of fungal populations. , 1996, Annual review of phytopathology.

[46]  P. Vos,et al.  AFLP: a new technique for DNA fingerprinting. , 1995, Nucleic acids research.

[47]  M. S. Wolfe,et al.  POPULATION GENETICS OF PLANT PATHOGEN INTERACTIONS: The Example of the Erysiphe graminis-Hordeum vulgare Pathosystem , 1994 .

[48]  William E. Fry,et al.  Population Genetics and Intercontinental Migrations of Phytophthora Infestans , 1992 .

[49]  K. McCluskey,et al.  Identification and characterization of chromosome length polymorphisms among strains representing fourteen races of Ustilago hordei. , 1990 .

[50]  E. G. Simmons,et al.  Alternaria themes and variations (22-26) , 1986 .

[51]  J. Burdon,et al.  The effect of sexual and asexual reproduction on the isozyme structure of populations of Puccinia graminis , 1985 .

[52]  M. Maun,et al.  Reproduction and Survivorship of Cakile edentula var. lacustris Along the Lake Huron Shoreline , 1984 .

[53]  J. Groth Effect of Sexual and Asexual Reproduction on Race Abundance in Cereal Rust Fungus Populations , 1982 .

[54]  L. T. Evans,et al.  Wheat and its rust parasites in Australia. , 1981 .

[55]  A. Roelfs,et al.  A Comparison of Virulence Phenotypes in Wheat Stem Rust Populations Reproducing Sexually and Asexually , 1980 .