Rotatable Skeleton for the Alleviation of Thermally Accumulated Defects in Inorganic Perovskite Solar Cells

[1]  Zhike Liu,et al.  Recent Advances in CsPbX3 Perovskite Solar Cells: Focus on Crystallization Characteristics and Controlling Strategies , 2022, Advanced Energy Materials.

[2]  Zhanhua Wei,et al.  Moisture-triggered fast crystallization enables efficient and stable perovskite solar cells , 2022, Nature Communications.

[3]  W. Yin,et al.  Kinetic pathway of γ-to-δ phase transition in CsPbI3 , 2022, Chem.

[4]  Zhike Liu,et al.  Record‐Efficiency Flexible Perovskite Solar Cells Enabled by Multifunctional Organic Ions Interface Passivation , 2022, Advanced materials.

[5]  Li‐Min Liu,et al.  How Hole Injection Accelerates Both Ion Migration and Nonradiative Recombination in Metal Halide Perovskites. , 2022, Journal of the American Chemical Society.

[6]  Dong Suk Kim,et al.  Conformal quantum dot–SnO2 layers as electron transporters for efficient perovskite solar cells , 2022, Science.

[7]  K. Zhao,et al.  Spontaneous Construction of Multidimensional Heterostructure Enables Enhanced Hole Extraction for Inorganic Perovskite Solar Cells to Exceed 20% Efficiency , 2021, Advanced Energy Materials.

[8]  Kun Liu,et al.  π-π Conjugate Structure Enabling the Channel Construction of Carrier-Facilitated Transport in 1D-3D Multidimensional CsPbI2Br Solar Cells with High Stability , 2021, Nano Energy.

[9]  A. Cabot,et al.  Chromium‐Based Metal–Organic Framework as A‐Site Cation in CsPbI2Br Perovskite Solar Cells , 2021, Advanced Functional Materials.

[10]  W. Xiang,et al.  Rational Surface-Defect Control via Designed Passivation for High-Efficiency Inorganic Perovskite Solar Cells. , 2021, Angewandte Chemie.

[11]  A. Cabot,et al.  Architecturing 1D-2D-3D Multidimensional Coupled CsPbI2 Br Perovskites toward Highly Effective and Stable Solar Cells. , 2021, Small.

[12]  Jay B. Patel,et al.  Limits to Electrical Mobility in Lead-Halide Perovskite Semiconductors , 2021, The journal of physical chemistry letters.

[13]  A. V. van Duin,et al.  Atomistic Insights Into the Degradation of Inorganic Halide Perovskite CsPbI3: A Reactive Force Field Molecular Dynamics Study , 2021, The journal of physical chemistry letters.

[14]  A. Jen,et al.  Modifying Surface Termination of CsPbI3 Grain Boundaries by 2D Perovskite Layer for Efficient and Stable Photovoltaics , 2021, Advanced Functional Materials.

[15]  S. Chattopadhyay,et al.  Impact of surface defects in electron beam evaporated ZnO thin films on FET biosensing characteristics towards reliable PSA detection , 2021 .

[16]  W. Mao,et al.  Preserving a robust CsPbI3 perovskite phase via pressure-directed octahedral tilt , 2021, Nature communications.

[17]  Wenzhe Li,et al.  Engineered Electronic Structure and Carrier Dynamics in Emerging Cs2AgxNa1-xFeCl6 Perovskite Single Crystals. , 2020, The journal of physical chemistry letters.

[18]  S. Liu,et al.  Unveiling the Effects of Hydrolysis‐Derived DMAI/DMAPbIx Intermediate Compound on the Performance of CsPbI3 Solar Cells , 2020, Advanced science.

[19]  Kun Liu,et al.  Lattice‐Matching Structurally‐Stable 1D@3D Perovskites toward Highly Efficient and Stable Solar Cells , 2020, Advanced Energy Materials.

[20]  Li‐Min Liu,et al.  Synergy between Ion Migration and Charge Carrier Recombination in Metal-Halide Perovskites. , 2020, Journal of the American Chemical Society.

[21]  M. Grätzel,et al.  Ba-induced phase segregation and band gap reduction in mixed-halide inorganic perovskite solar cells , 2019, Nature Communications.

[22]  Y. Qi,et al.  Thermodynamically stabilized β-CsPbI3–based perovskite solar cells with efficiencies >18% , 2019, Science.

[23]  Yang Yang,et al.  Tailored Phase Transformation of CsPbI2Br Films by Copper (II) Bromide for High-Performance All-Inorganic Perovskite Solar Cells. , 2019, Nano letters.

[24]  Xingyu Gao,et al.  Band-Aligned Polymeric Hole Transport Materials for Extremely Low Energy Loss α-CsPbI3 Perovskite Nanocrystal Solar Cells , 2018, Joule.

[25]  Z. Yin,et al.  Solvent-controlled growth of inorganic perovskite films in dry environment for efficient and stable solar cells , 2018, Nature Communications.

[26]  Cuiling Zhang,et al.  Thermodynamically Self‐Healing 1D–3D Hybrid Perovskite Solar Cells , 2018 .

[27]  Y. Mai,et al.  All-Inorganic CsPbI2Br Perovskite Solar Cells with High Efficiency Exceeding 13. , 2018, Journal of the American Chemical Society.

[28]  A. Jen,et al.  Quantifying Efficiency Loss of Perovskite Solar Cells by a Modified Detailed Balance Model , 2018, 1801.02941.

[29]  J. Ball,et al.  Defects in perovskite-halides and their effects in solar cells , 2016, Nature Energy.

[30]  Ashley R. Marshall,et al.  Quantum dot–induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics , 2016, Science.

[31]  Jay B. Patel,et al.  Bandgap‐Tunable Cesium Lead Halide Perovskites with High Thermal Stability for Efficient Solar Cells , 2016 .

[32]  Huijun Zhao,et al.  Functionalization of perovskite thin films with moisture-tolerant molecules , 2016, Nature Energy.

[33]  Henry J. Snaith,et al.  Stability of Metal Halide Perovskite Solar Cells , 2015 .

[34]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[35]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[36]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .