Maximum likelihood estimation of the parameters of student’s t Birnbaum-Saunders distribution: a comparative study

Abstract In the last decade, Diáz-Garciá and Leiva-Sánchez (2005, 2007) proposed a generalized Birnbaum-Saunders distribution based on elliptically contoured distributions. A special case of this generalization is Student’s t Birnbaum-Saunders distribution. This flexible lifetime distribution generalizes both the Cauchy Birnbaum-Saunders distribution and the two-parameter Birnbaum-Saunders distribution. In this comparison paper, we discuss maximum likelihood estimation methods for the parameters of this distribution. We numerically illustrate and examine the performances of all discussed methods using extensive Monte Carlo simulations and illustrative examples. Furthermore, we analyze real-life data to assess the practical usage of the considered generalized family of distributions, and to illustrate the discussed estimation methods.

[1]  N. Balakrishnan,et al.  Birnbaum‐Saunders distribution: A review of models, analysis, and applications , 2018, Applied Stochastic Models in Business and Industry.

[2]  Xiaojun Zhu,et al.  On the existence and uniqueness of the maximum likelihood estimates of the parameters of Birnbaum–Saunders distribution based on Type-I, Type-II and hybrid censored samples , 2014 .

[3]  Robert L. Wolpert,et al.  Statistical Inference , 2019, Encyclopedia of Social Network Analysis and Mining.

[4]  Donald P. Schwab,et al.  On Incomplete Data , 2013 .

[5]  Narayanaswamy Balakrishnan,et al.  Shape and change point analyses of the Birnbaum-Saunders-t hazard rate and associated estimation , 2012, Comput. Stat. Data Anal..

[6]  Narayanaswamy Balakrishnan,et al.  Order Restricted Inference for Exponential Step-Stress Models , 2009, IEEE Transactions on Reliability.

[7]  N. Balakrishnan,et al.  On the maximum likelihood estimation of parameters of Weibull distribution based on complete and censored data , 2008 .

[8]  G. McLachlan,et al.  The EM Algorithm and Extensions: Second Edition , 2008 .

[9]  José A. Díaz-García,et al.  Erratum to “A new family of life distributions based on the elliptically contoured distributions”: [J. Statist. Plann. Inference 128(2) (2005) 445–457] , 2007 .

[10]  José A. Díaz-García,et al.  A new family of life distributions based on the elliptically contoured distributions , 2005 .

[11]  Debasis Kundu,et al.  Modified moment estimation for the two-parameter Birnbaum-Saunders distribution , 2003, Comput. Stat. Data Anal..

[12]  Karl J. Friston,et al.  Variance Components , 2003 .

[13]  K. Lange A gradient algorithm locally equivalent to the EM algorithm , 1995 .

[14]  Jeremy MG Taylor,et al.  Robust Statistical Modeling Using the t Distribution , 1989 .

[15]  A. Desmond Stochastic models of failure in random environments , 1985 .

[16]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[17]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[18]  H. Akaike A new look at the statistical model identification , 1974 .

[19]  Z. Birnbaum,et al.  A new family of life distributions , 1969, Journal of Applied Probability.

[20]  Sam C. Saunders,et al.  Estimation for a family of life distributions with applications to fatigue , 1969, Journal of Applied Probability.

[21]  E. Kaplan,et al.  Nonparametric Estimation from Incomplete Observations , 1958 .