On computing the minimal number of defining relations for finite groups
暂无分享,去创建一个
This paper describes a method for computing the Schur multiplicator of a finite supersolvable group G, given by some fixed generating system chosen from a cyclic series for G, and hence a lower bound for the minimal number of relations needed to define G.
[1] G. H. Bradley. Algorithms for Hermite and Smith normal matrices and linear Diophantine equations , 1971 .
[2] F. N. Cole. The groups of order , 1904 .
[3] J. Schur. Untersuchungen über die Darstellung der endlichen Gruppen durch gebrochene lineare Substitutionen. , 1907 .
[4] The deficiency of wreath products of groups , 1973 .
[5] J. W. Wamsley,et al. Minimal presentations for groups of order 2n, n ≤ 6 , 1973, Journal of the Australian Mathematical Society.