Estimating the crop leaf area index using hyperspectral remote sensing

[1]  Huili Gong,et al.  Sensitivity Analysis of Vegetation Reflectance to Biochemical and Biophysical Variables at Leaf, Canopy, and Regional Scales , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[2]  Adina Tillack,et al.  Estimation of the seasonal leaf area index in an alluvial forest using high-resolution satellite-based vegetation indices , 2014 .

[3]  Bo-Hui Tang,et al.  Inversion of the PROSAIL model to estimate leaf area index of maize, potato, and sunflower fields from unmanned aerial vehicle hyperspectral data , 2014, Int. J. Appl. Earth Obs. Geoinformation.

[4]  Pablo J. Zarco-Tejada,et al.  Deriving Predictive Relationships of Carotenoid Content at the Canopy Level in a Conifer Forest Using Hyperspectral Imagery and Model Simulation , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[5]  W. Verhoef,et al.  Bayesian object-based estimation of LAI and chlorophyll from a simulated Sentinel-2 top-of-atmosphere radiance image , 2014 .

[6]  R. Feng,et al.  Analysis of the relationship between the spectral characteristics of maize canopy and leaf area index under drought stress , 2013 .

[7]  Zhanglong Jing,et al.  WSN monitoring system for greenhouse environmental parameters and CC2530 transmission characteristics. , 2013 .

[8]  W. Fan,et al.  The spatial scaling effect of the discrete-canopy effective leaf area index retrieved by remote sensing , 2013, Science China Earth Sciences.

[9]  Marsha Fox,et al.  Speed and accuracy improvements in FLAASH atmospheric correction of hyperspectral imagery , 2012 .

[10]  Lammert Kooistra,et al.  Mapping Vegetation Density in a Heterogeneous River Floodplain Ecosystem Using Pointable CHRIS/PROBA Data , 2012, Remote. Sens..

[11]  A. Skidmore,et al.  Mapping spatio-temporal variation of grassland quantity and quality using MERIS data and the PROSAIL model , 2012 .

[12]  A. Gonsamo,et al.  The sensitivity based estimation of leaf area index from spectral vegetation indices , 2012 .

[13]  C. Atzberger,et al.  Spatially constrained inversion of radiative transfer models for improved LAI mapping from future Sentinel-2 imagery , 2012 .

[14]  P. Zarco-Tejada,et al.  Mapping radiation interception in row-structured orchards using 3D simulation and high-resolution airborne imagery acquired from a UAV , 2012, Precision Agriculture.

[15]  A. Kuusk,et al.  Inverting a forest canopy reflectance model to retrieve the overstorey and understorey leaf area index for forest stands , 2011 .

[16]  I. Herrmann,et al.  LAI assessment of wheat and potato crops by VENμS and Sentinel-2 bands , 2011 .

[17]  Jianxi Huang,et al.  Estimation of Overstory and Understory Leaf Area Index by Combining Hyperion and Panchromatic QuickBird Data Using Neural Network Method , 2011 .

[18]  A. Huete,et al.  Estimating biophysical parameters of rice with remote sensing data using support vector machines , 2011, Science China Life Sciences.

[19]  F. Baret,et al.  Retrieving wheat Green Area Index during the growing season from optical time series measurements based on neural network radiative transfer inversion , 2011 .

[20]  G. Hoogenboom,et al.  Integration of MODIS LAI and vegetation index products with the CSM–CERES–Maize model for corn yield estimation , 2011 .

[21]  Feng Xiaoming,et al.  Multi-scale MSDT inversion based on LAI spatial knowledge , 2012 .

[22]  L. Pei A Quantitative Method for Grassland LAI Inversion Based on CHRIS/PROBA Data , 2011 .

[23]  W. Fan,et al.  Crop area and leaf area index simultaneous retrieval based on spatial scaling transformation , 2010 .

[24]  Kaishan Song,et al.  Application of wavelet transform on hyperspectral reflectance for soybean lai estimation in the songnen plain, China , 2010, 2010 IEEE International Geoscience and Remote Sensing Symposium.

[25]  Xiang-mo Guo,et al.  Bivalent Insect-Resistant Gene Transgenic Cotton Variety CCRI 41 with High Efficiency and Broad Aadaptability , 2010 .

[26]  Wouter Dorigo,et al.  Applying different inversion techniques to retrieve stand variables of summer barley with PROSPECT + SAIL , 2010, Int. J. Appl. Earth Obs. Geoinformation.

[27]  S. Liang,et al.  Retrieving crop leaf area index by assimilation of MODIS data into a crop growth model , 2010 .

[28]  W. Verhoef,et al.  A spectral directional reflectance model of row crops , 2010 .

[29]  Zhongxin Chen,et al.  Characterizing Spatial Patterns of Phenology in Cropland of China Based on Remotely Sensed Data , 2010 .

[30]  Richard Bamler,et al.  Enhanced Automated Canopy Characterization from Hyperspectral Data by a Novel Two Step Radiative Transfer Model Inversion Approach , 2009, Remote. Sens..

[31]  W. Fan,et al.  Accurate LAI retrieval method based on PROBA/CHRIS data. , 2009 .

[32]  A. Goetz,et al.  Atmospheric correction algorithms for hyperspectral remote sensing data of land and ocean , 2009 .

[33]  W. Verhoef,et al.  PROSPECT+SAIL models: A review of use for vegetation characterization , 2009 .

[34]  D. Roberts,et al.  Hierarchical Multiple Endmember Spectral Mixture Analysis (MESMA) of hyperspectral imagery for urban environments , 2009 .

[35]  Antonio J. Plaza,et al.  Spatial Preprocessing for Endmember Extraction , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[36]  Martha C. Anderson,et al.  Utility of an image-based canopy reflectance modeling tool for remote estimation of LAI and leaf chlorophyll content at the field scale , 2009 .

[37]  G. D’Urso,et al.  Experimental assessment of the Sentinel-2 band setting for RTM-based LAI retrieval of sugar beet and maize , 2009 .

[38]  P. Gong,et al.  Comparative Analysis of EO-1 ALI and Hyperion, and Landsat ETM+ Data for Mapping Forest Crown Closure and Leaf Area Index , 2008, Sensors.

[39]  A. Skidmore,et al.  Inversion of a radiative transfer model for estimating vegetation LAI and chlorophyll in a heterogeneous grassland , 2008 .

[40]  Jindi Wang,et al.  A Bayesian network algorithm for retrieving the characterization of land surface vegetation , 2008 .

[41]  Wu Wenbin,et al.  An integrated model to simulate sown area changes for major crops at a global scale , 2008 .

[42]  S. Ustin,et al.  Multi-temporal vegetation canopy water content retrieval and interpretation using artificial neural networks for the continental USA , 2008 .

[43]  Qiang Liu,et al.  LAI retrieval and uncertainty evaluations for typical row-planted crops at different growth stages , 2008 .

[44]  R. Houborg,et al.  Mapping leaf chlorophyll and leaf area index using inverse and forward canopy reflectance modeling and SPOT reflectance data , 2008 .

[45]  M. Vohland,et al.  Estimating structural and biochemical parameters for grassland from spectroradiometer data by radiative transfer modelling (PROSPECT+SAIL) , 2008 .

[46]  Qingbo Zhou,et al.  An integrated model to simulate sown area changes for major crops at a global scale , 2008 .

[47]  Wen-Bin Wu,et al.  Mapping Spatial and Temporal Variations of Leaf Area Index for Winter Wheat in North China , 2007 .

[48]  Yun Shi,et al.  Evaluation of MODIS Land Cover and LAI Products in Cropland of North China Plain Using In Situ Measurements and Landsat TM Images , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[49]  W. Verhoef,et al.  Coupled soil–leaf-canopy and atmosphere radiative transfer modeling to simulate hyperspectral multi-angular surface reflectance and TOA radiance data , 2007 .

[50]  R. Giering,et al.  Retrieving surface parameters for climate models from Moderate Resolution Imaging Spectroradiometer (MODIS)-Multiangle Imaging Spectroradiometer (MISR) Albedo Products , 2007 .

[51]  Jean-Luc Widlowski,et al.  Third Radiation Transfer Model Intercomparison (RAMI) exercise: Documenting progress in canopy reflectance models , 2007 .

[52]  S. Durbha,et al.  Support vector machines regression for retrieval of leaf area index from multiangle imaging spectroradiometer , 2007 .

[53]  R. Houborg,et al.  Combining vegetation index and model inversion methods for the extraction of key vegetation biophysical parameters using Terra and Aqua MODIS reflectance data , 2007 .

[54]  F. Baret,et al.  Neural network estimation of LAI, fAPAR, fCover and LAI×Cab, from top of canopy MERIS reflectance data : Principles and validation , 2006 .

[55]  F. Baret,et al.  Influence of landscape spatial heterogeneity on the non-linear estimation of leaf area index from moderate spatial resolution remote sensing data , 2006 .

[56]  A. Kuusk,et al.  Impact of understory vegetation on forest canopy reflectance and remotely sensed LAI estimates , 2006 .

[57]  M. Schlerf,et al.  Inversion of a forest reflectance model to estimate structural canopy variables from hyperspectral remote sensing data , 2006 .

[58]  Shen-En Qian,et al.  Noise reduction of hyperspectral imagery using hybrid spatial-spectral derivative-domain wavelet shrinkage , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[59]  J. Chen,et al.  Global mapping of foliage clumping index using multi-angular satellite data , 2005 .

[60]  M. Schlerf,et al.  Remote sensing of forest biophysical variables using HyMap imaging spectrometer data , 2005 .

[61]  S. Liang,et al.  A hybrid inversion method for mapping leaf area index from MODIS data: experiments and application to broadleaf and needleleaf canopies , 2005 .

[62]  H. Cui Thermal bidirectional gap probability model for row crop canopies and validation , 2005 .

[63]  C. Atzberger Object-based retrieval of biophysical canopy variables using artificial neural nets and radiative transfer models , 2004 .

[64]  W. Cohen,et al.  Hyperspectral versus multispectral data for estimating leaf area index in four different biomes , 2004 .

[65]  P. Gong,et al.  Wavelet transform applied to EO-1 hyperspectral data for forest LAI and crown closure mapping , 2004 .

[66]  John R. Miller,et al.  Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture , 2004 .

[67]  Jean-Philippe Gastellu-Etchegorry,et al.  DART: a 3D model for simulating satellite images and studying surface radiation budget , 2004 .

[68]  Ruiliang Pu,et al.  Extraction of red edge optical parameters from Hyperion data for estimation of forest leaf area index , 2003, IEEE Trans. Geosci. Remote. Sens..

[69]  S. Liang,et al.  Retrieving leaf area index using a genetic algorithm with a canopy radiative transfer model , 2003 .

[70]  W. Cohen,et al.  An improved strategy for regression of biophysical variables and Landsat ETM+ data. , 2003 .

[71]  J. Ardö,et al.  Investigating the use of Landsat thematic mapper data for estimation of forest leaf area index in southern Sweden , 2003 .

[72]  F. Baret,et al.  Validation of neural net techniques to estimate canopy biophysical variables from remote sensing data , 2002 .

[73]  F. Baret,et al.  Improving canopy variables estimation from remote sensing data by exploiting ancillary information. Case study on sugar beet canopies , 2002 .

[74]  R. Fernandes,et al.  A multi-scale approach to mapping effective Leaf Area Index in Boreal Picea mariana stands using high spatial resolution CASI imagery , 2002 .

[75]  A. Karnieli,et al.  Mapping of several soil properties using DAIS-7915 hyperspectral scanner data - a case study over clayey soils in Israel , 2002 .

[76]  Zhao,et al.  The Red Edge Parameters of Different Wheat Varieties Under Different Fertilization and Irrigation Treatments , 2002 .

[77]  A. Kuusk,et al.  Investigating relationships between Landsat ETM+ sensor data and leaf area index in a boreal conifer forest , 2001 .

[78]  A. Kuusk A two-layer canopy reflectance model , 2001 .

[79]  John R. Miller,et al.  Scaling-up and model inversion methods with narrowband optical indices for chlorophyll content estimation in closed forest canopies with hyperspectral data , 2001, IEEE Trans. Geosci. Remote. Sens..

[80]  Jindi Wang,et al.  A priori knowledge accumulation and its application to linear BRDF model inversion , 2001 .

[81]  N. Broge,et al.  Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density , 2001 .

[82]  K. Huemmrich The GeoSail model: a simple addition to the SAIL model to describe discontinuous canopy reflectance , 2001 .

[83]  W. Qin,et al.  3-D Scene Modeling of Semidesert Vegetation Cover and its Radiation Regime , 2000 .

[84]  J. Privette,et al.  Inversion methods for physically‐based models , 2000 .

[85]  J. R. Jensen Remote Sensing of the Environment: An Earth Resource Perspective , 2000 .

[86]  R. Myneni,et al.  Investigation of a model inversion technique to estimate canopy biophysical variables from spectral and directional reflectance data , 2000 .

[87]  Michael E. Winter,et al.  Autonomous hyperspectral end-member determination methods , 1999, Remote Sensing.

[88]  Stefano Tarantola,et al.  A Quantitative Model-Independent Method for Global Sensitivity Analysis of Model Output , 1999, Technometrics.

[89]  L. Johnson,et al.  Spectrometric Estimation of Total Nitrogen Concentration in Douglas-Fir Foliage , 1996 .

[90]  J. Chen,et al.  Retrieving Leaf Area Index of Boreal Conifer Forests Using Landsat TM Images , 1996 .

[91]  J. Clevers,et al.  The robustness of canopy gap fraction estimates from red and near-infrared reflectances: A comparison of approaches , 1995 .

[92]  A. Kuusk A Markov chain model of canopy reflectance , 1995 .

[93]  F. M. Danson,et al.  Extraction of vegetation biophysical parameters by inversion of the PROSPECT + SAIL models on sugar beet canopy reflectance data. Application to TM and AVIRIS sensors , 1995 .

[94]  A. Kuusk A fast, invertible canopy reflectance model , 1995 .

[95]  Nadine Gobron,et al.  Optical remote sensing of vegetation: Modeling, caveats, and algorithms , 1995 .

[96]  A. Kuusk A multispectral canopy reflectance model , 1994 .

[97]  J. Peñuelas,et al.  The red edge position and shape as indicators of plant chlorophyll content, biomass and hydric status. , 1994 .

[98]  P. Gong,et al.  Remote Sensing of Seasonal Leaf Area Index Across the Oregon Transect , 1994 .

[99]  Bo-Cai Gao,et al.  An operational method for estimating signal to noise ratios from data acquired with imaging spectrometers , 1993 .

[100]  J. Chen,et al.  Defining leaf area index for non‐flat leaves , 1992 .

[101]  A. Kuusk The Hot Spot Effect in Plant Canopy Reflectance , 1991 .

[102]  A. Kuusk,et al.  A reflectance model for the homogeneous plant canopy and its inversion , 1989 .

[103]  A. Strahler,et al.  Geometric-Optical Bidirectional Reflectance Modeling of a Conifer Forest Canopy , 1986, IEEE Transactions on Geoscience and Remote Sensing.

[104]  D. B. Simons,et al.  A hill-sliding strategy for initialization of Gaussian clusters in the multidimensional space , 1985 .

[105]  W. Verhoef Light scattering by leaf layers with application to canopy reflectance modeling: The Scattering by Arbitrarily Inclined Leaves (SAIL) model , 1984 .

[106]  J. Ross The radiation regime and architecture of plant stands , 1981, Tasks for vegetation sciences 3.