Chapter 2.3 – Susceptibility Artifacts

In vivo magnetic resonance imaging of the spinal cord is challenging due to susceptibility variations between various tissue types, air in the lungs and trachea, and in some cases surgical implants that significantly distort the applied magnetic field. These field inhomogeneities create off-resonance induced artifacts in the images, such as signal dropouts and pileups, geometric distortions, and incomplete fat suppression. Bulk physiologic motion from cardiac and respiratory cycles, cerebrospinal fluid pulsation, as well as breathing and swallowing further cause temporal variations of these field inhomogeneities. Moreover, the anatomy of the spine requires a relatively large field of view (FOV), especially in the sagittal imaging plane, while the small cross-sectional size of the spinal cord mandates high-spatial-resolution images. The resulting long readout duration, especially that of echo planar imaging (EPI), further exacerbates the artifacts. This chapter reviews susceptibility artifacts, their impact on EPI of the spinal cord, and methods to limit these artifacts. Acquisition-based methods include multishot imaging, parallel acquisitions, reduced-FOV methods, and non-EPI techniques. Reconstruction-based methods involve distortion correction, phase correction, and other advanced techniques.

[1]  Stefan Skare,et al.  How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging , 2003, NeuroImage.

[2]  S. Skare,et al.  Correction of MR image distortions induced by metallic objects using a 3D cubic B‐spline basis set: Application to stereotactic surgical planning , 2005, Magnetic resonance in medicine.

[3]  E. Kholmovski,et al.  High‐resolution DTI with 2D interleaved multislice reduced FOV single‐shot diffusion‐weighted EPI (2D ss‐rFOV‐DWEPI) , 2005, Magnetic resonance in medicine.

[4]  J Hennig,et al.  RARE imaging: A fast imaging method for clinical MR , 1986, Magnetic resonance in medicine.

[5]  C. Pierpaoli,et al.  Diffusion‐weighted radial fast spin‐echo for high‐resolution diffusion tensor imaging at 3T , 2008, Magnetic resonance in medicine.

[6]  Jie Deng,et al.  Multishot diffusion‐weighted SPLICE PROPELLER MRI of the abdomen , 2008, Magnetic resonance in medicine.

[7]  A. Blamire,et al.  Quantitative proton magnetic resonance spectroscopy of the cervical spinal cord , 2004, Magnetic resonance in medicine.

[8]  E. Haacke,et al.  Geometric distortion correction in gradient‐echo imaging by use of dynamic time warping , 1999, Magnetic resonance in medicine.

[9]  J. Michael Fitzpatrick,et al.  A technique for accurate magnetic resonance imaging in the presence of field inhomogeneities , 1992, IEEE Trans. Medical Imaging.

[10]  R. Stollberger,et al.  Diffusion-weighted MR imaging of the spinal cord. , 2000, AJNR. American journal of neuroradiology.

[11]  J. Pipe Motion correction with PROPELLER MRI: Application to head motion and free‐breathing cardiac imaging , 1999, Magnetic resonance in medicine.

[12]  Greig C Scott,et al.  Pyrolytic graphite foam: A passive magnetic susceptibility matching material , 2010, Journal of magnetic resonance imaging : JMRI.

[13]  B. Ellingson,et al.  High-resolution in vivo diffusion tensor imaging of the injured cat spinal cord using self-navigated, interleaved, variable-density spiral acquisition (SNAILS-DTI). , 2010, Magnetic resonance imaging.

[14]  C. Holder,et al.  Diffusion-weighted MR imaging of the normal human spinal cord in vivo. , 2000, AJNR. American journal of neuroradiology.

[15]  Robin M Heidemann,et al.  High resolution diffusion‐weighted imaging using readout‐segmented echo‐planar imaging, parallel imaging and a two‐dimensional navigator‐based reacquisition , 2009, Magnetic resonance in medicine.

[16]  Julien Cohen-Adad,et al.  BOLD signal responses to controlled hypercapnia in human spinal cord , 2010, NeuroImage.

[17]  David H. Miller,et al.  Contiguous‐slice zonally oblique multislice (CO‐ZOOM) diffusion tensor imaging: Examples of in vivo spinal cord and optic nerve applications , 2009, Journal of magnetic resonance imaging : JMRI.

[18]  Matthew Brett,et al.  An Evaluation of the Use of Magnetic Field Maps to Undistort Echo-Planar Images , 2003, NeuroImage.

[19]  Kazuhiro Tsuchiya,et al.  Diffusion tractography of the cervical spinal cord by using parallel imaging. , 2005, AJNR. American journal of neuroradiology.

[20]  T. Jaermann,et al.  A preliminary study of the effects of trigger timing on diffusion tensor imaging of the human spinal cord. , 2006, AJNR. American journal of neuroradiology.

[21]  P. Jezzard,et al.  Correction for geometric distortion in echo planar images from B0 field variations , 1995, Magnetic resonance in medicine.

[22]  K. Tsuchiya,et al.  Diffusion-weighted MRI of the cervical spinal cord using a single-shot fast spin-echo technique: findings in normal subjects and in myelomalacia , 2003, Neuroradiology.

[23]  Koichi Oshio,et al.  Phase errors in multi‐shot echo planar imaging , 1994, Magnetic resonance in medicine.

[24]  S. Maier,et al.  MR line-scan diffusion imaging of the spinal cord in children. , 2000, AJNR. American journal of neuroradiology.

[25]  Julien Cohen-Adad,et al.  Fast diffusion tensor imaging and tractography of the whole cervical spinal cord using point spread function corrected echo planar imaging , 2013, Magnetic resonance in medicine.

[26]  G. Glover,et al.  Rapid in vivo proton shimming , 1991, Magnetic resonance in medicine.

[27]  Jin Hyung Lee,et al.  DWI of the spinal cord with reduced FOV single‐shot EPI , 2008, Magnetic resonance in medicine.

[28]  S. Skare,et al.  Robust GRAPPA‐accelerated diffusion‐weighted readout‐segmented (RS)‐EPI , 2009, Magnetic resonance in medicine.

[29]  J. Caillé,et al.  Diffusion-weighted MR imaging with apparent diffusion coefficient and apparent diffusion tensor maps in cervical spondylotic myelopathy. , 2003, Radiology.

[30]  J. Pipe,et al.  Turboprop: Improved PROPELLER imaging , 2006, Magnetic resonance in medicine.

[31]  Stefan Skare,et al.  Image Distortion and Its Correction in Diffusion MRI , 2010 .

[32]  R. Stollberger,et al.  Diffusion‐weighted imaging of the spinal cord: Interleaved echo‐planar imaging is superior to fast spin‐echo , 2002, Journal of magnetic resonance imaging : JMRI.

[33]  Stephan E Maier,et al.  Diffusion Tensor Imaging of the Spinal Cord , 2005, Annals of the New York Academy of Sciences.

[34]  R. Mattrey,et al.  Reducing magnetic susceptibility differences using liquid fluorocarbon pads (Sat Pad): results with spectral presaturation of fat. , 1994, Artificial cells, blood substitutes, and immobilization biotechnology.

[35]  Wilson Fong Handbook of MRI Pulse Sequences , 2005 .

[36]  P. Boesiger,et al.  Reduced field‐of‐view MRI using outer volume suppression for spinal cord diffusion imaging , 2007, Magnetic resonance in medicine.

[37]  R. Lenkinski,et al.  3T MR of the prostate: Reducing susceptibility gradients by inflating the endorectal coil with a barium sulfate suspension , 2007, Magnetic resonance in medicine.

[38]  J. Pauly,et al.  Diffusion‐weighted interleaved echo‐planar imaging with a pair of orthogonal navigator echoes , 1996, Magnetic resonance in medicine.

[39]  A. D. de Crespigny,et al.  Navigated Diffusion Imaging of Normal and Ischemic Human Brain , 1995, Magnetic resonance in medicine.

[40]  Robin M Heidemann,et al.  Generalized autocalibrating partially parallel acquisitions (GRAPPA) , 2002, Magnetic resonance in medicine.

[41]  J. Gore,et al.  Measurement of the point spread function in MRI using constant time imaging , 1997, Magnetic resonance in medicine.

[42]  Ron Kikinis,et al.  Comparison of single-shot echo-planar and line scan protocols for diffusion tensor imaging. , 2004, Academic radiology.

[43]  Roland Bammer,et al.  Diffusion Imaging of the Human Spinal Cord and the Vertebral Column , 2003, Topics in magnetic resonance imaging : TMRI.

[44]  J. Finsterbusch,et al.  Diffusion tensor mapping of the human brain using single‐shot line scan imaging , 2000, Journal of magnetic resonance imaging : JMRI.

[45]  Usha Sinha,et al.  Geometric distortion correction of high‐resolution 3 T diffusion tensor brain images , 2005, Magnetic resonance in medicine.

[46]  Gareth J. Barker,et al.  Investigating Cervical Spinal Cord Structure Using Axial Diffusion Tensor Imaging , 2002, NeuroImage.

[47]  G. Johnson,et al.  Fat suppression in MR imaging: techniques and pitfalls. , 1999, Radiographics : a review publication of the Radiological Society of North America, Inc.

[48]  G. Zaharchuk,et al.  Reduced Field-of-View Diffusion Imaging of the Human Spinal Cord: Comparison with Conventional Single-Shot Echo-Planar Imaging , 2011, American Journal of Neuroradiology.

[49]  Ferenc A. Jolesz,et al.  Collateral nerve fibers in human spinal cord: Visualization with magnetic resonance diffusion tensor imaging , 2006, NeuroImage.

[50]  J. Polimeni,et al.  32‐Channel RF coil optimized for brain and cervical spinal cord at 3 T , 2011, Magnetic resonance in medicine.

[51]  Roland Bammer,et al.  Line scan diffusion imaging of the spine. , 2003, AJNR. American journal of neuroradiology.

[52]  J. Finsterbusch,et al.  Diffusion‐weighted single‐shot line scan imaging of the human brain , 1999, Magnetic resonance in medicine.

[53]  J. Hajnal,et al.  Diffusion-weighted imaging of the spine using radialk-space trajectories , 2001, Magnetic Resonance Materials in Physics, Biology and Medicine.

[54]  R. Ladebeck,et al.  Echo-Planar Imaging Image Artifacts , 1998 .

[55]  Stephan E. Maier,et al.  Examination of spinal cord tissue architecture with magnetic resonance diffusion tensor imaging , 2007, Neurotherapeutics.

[56]  Gian Domenico Iannetti,et al.  Behavioral/systems/cognitive Functional Responses in the Human Spinal Cord during Willed Motor Actions: Evidence for Side-and Rate-dependent Activity , 2022 .

[57]  Tzu-Chao Chuang,et al.  PROPELLER EPI: An MRI technique suitable for diffusion tensor imaging at high field strength with reduced geometric distortions , 2005, Magnetic resonance in medicine.

[58]  Pratik Mukherjee,et al.  Single-shot fast spin-echo diffusion tensor imaging of the brain and spine with head and phased array coils at 1.5 T and 3.0 T. , 2004, Magnetic resonance imaging.

[59]  R. Bammer,et al.  Diffusion-weighted MR imaging (DWI) in spinal cord ischemia , 2006, Neuroradiology.

[60]  C T Moonen,et al.  Diffusion tensor MRI of the spinal cord , 2000, Magnetic resonance in medicine.

[61]  M. Horsfield,et al.  Sensitivity-encoded diffusion tensor MR imaging of the cervical cord. , 2003, AJNR. American journal of neuroradiology.

[62]  D. Mitchell,et al.  Comparison of Kaopectate with barium for negative and positive enteric contrast at MR imaging. , 1991, Radiology.

[63]  G. Mckinnon Ultrafast interleaved gradient‐echo‐planar imaging on a standard scanner , 1993, Magnetic resonance in medicine.

[64]  Diffusion-weighted MR imaging (DWI) in the evaluation of epidural spinal lesions , 2007, Neuroradiology.

[65]  M. Altbach,et al.  Isotropic diffusion weighting in radial fast spin‐echo magnetic resonance imaging , 2005, Magnetic resonance in medicine.

[66]  J. Schenck The role of magnetic susceptibility in magnetic resonance imaging: MRI magnetic compatibility of the first and second kinds. , 1996, Medical physics.

[67]  P. Reber,et al.  Correction of off resonance‐related distortion in echo‐planar imaging using EPI‐based field maps , 1998, Magnetic resonance in medicine.

[68]  Marine Fouquet,et al.  A Simple Way to Improve Anatomical Mapping of Functional Brain Imaging , 2010, Journal of neuroimaging : official journal of the American Society of Neuroimaging.

[69]  Mark Jenkinson,et al.  Fast, automated, N‐dimensional phase‐unwrapping algorithm , 2003, Magnetic resonance in medicine.

[70]  J. Finsterbusch High‐resolution diffusion tensor imaging with inner field‐of‐view EPI , 2009, Journal of magnetic resonance imaging : JMRI.