Managing the Dynamics of a Harmonic Potential Field-Guided Robot in a Cluttered Environment

This paper demonstrates the ability of the harmonic potential field (HPF) planning method to generate a well-behaved constrained path for a robot with second order dynamics in a cluttered environment. It is shown that HPF-based controllers may be developed for holonomic, as well as nonholonomic, robots to effectively suppress the effect of inertial forces on the robot's trajectory while maintaining all the attractive features of a purely kinematic HPF planner. The capabilities of the suggested navigation controller are demonstrated using simulation results for the holonomic and nonholonomic cases.

[1]  Ahmad A. Masoud,et al.  Robot navigation using a pressure generated mechanical stress field: "the biharmonic potential approach" , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[2]  Daniel E. Koditschek,et al.  Exact robot navigation using artificial potential functions , 1992, IEEE Trans. Robotics Autom..

[3]  Alastair Channon,et al.  Artificial Life , 2010, Encyclopedia of Machine Learning.

[4]  Frank Chongwoo Park,et al.  Fast Robot Motion Generation Using Principal Components: Framework and Algorithms , 2008, IEEE Transactions on Industrial Electronics.

[5]  George Leitmann,et al.  A Maxmin Distance Problem , 1972 .

[6]  G. Leitmann,et al.  Avoidance control , 1977 .

[7]  J. Brian Burns,et al.  Path planning using Laplace's equation , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[8]  Ahmad A. Masoud,et al.  Motion planning in the presence of directional and obstacle avoidance constraints using nonlinear, anisotropic, harmonic potential fields , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[9]  Micha Sharir,et al.  A Survey of Motion Planning and Related Geometric Algorithms , 1988, Artificial Intelligence.

[10]  Mo-Yuen Chow,et al.  Gain scheduler middleware: a methodology to enable existing controllers for networked control and teleoperation - part I: networked control , 2004, IEEE Transactions on Industrial Electronics.

[11]  J. Guldner,et al.  Sliding mode control for gradient tracking and robot navigation using artificial potential fields , 1995, IEEE Trans. Robotics Autom..

[12]  L. Tarassenko,et al.  Analogue computation of collision-free paths , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[13]  Chih-Lyang Hwang,et al.  Network-Based Fuzzy Decentralized Sliding-Mode Control for Car-Like Mobile Robots , 2005, IEEE Transactions on Industrial Electronics.

[14]  R. Grupen,et al.  Analog VLSI for robot path planning , 1992, [1992] Conference Record of the Twenty-Sixth Asilomar Conference on Signals, Systems & Computers.

[15]  Guido Bugmann,et al.  Rapid path planning for robotic manipulators using an emulated resistive grid , 1995 .

[16]  O. Khatib,et al.  Real-Time Obstacle Avoidance for Manipulators and Mobile Robots , 1985, Proceedings. 1985 IEEE International Conference on Robotics and Automation.

[17]  J. P. Lasalle Some Extensions of Liapunov's Second Method , 1960 .

[18]  Didier Keymeulen,et al.  A Reactive Robot Navigation System Based on a Fluid Dynamics Metaphor , 1990, PPSN.

[19]  Ahmad A. Masoud,et al.  Evolutionary action maps for navigating a robot in an unknown, multidimensional, stationary environment. II. Implementation and results , 1997, Proceedings of International Conference on Robotics and Automation.

[20]  Daniel E. Koditschek,et al.  Exact robot navigation by means of potential functions: Some topological considerations , 1987, Proceedings. 1987 IEEE International Conference on Robotics and Automation.

[21]  Ahmad A. Masoud,et al.  Constrained motion control using vector potential fields , 2000, IEEE Trans. Syst. Man Cybern. Part A.

[22]  Ahmad A. Masoud,et al.  Motion planning in the presence of directional and regional avoidance constraints using nonlinear, anisotropic, harmonic potential fields: a physical metaphor , 2002, IEEE Trans. Syst. Man Cybern. Part A.

[23]  B. R. Barmish,et al.  Guaranteed Avoidance Control and Holding Control , 1982 .

[24]  Jiang Wang,et al.  Robust Smooth-Trajectory Control of Nonlinear Servo Systems Based on Neural Networks , 2007, IEEE Transactions on Industrial Electronics.

[25]  Narendra Ahuja,et al.  Gross motion planning—a survey , 1992, CSUR.

[26]  S. Axler,et al.  Harmonic Function Theory , 1992 .