Scattering to a stationary solution for the superquintic radial wave equation outside an obstacle

We consider the focusing wave equation outside a ball of $\R^3$, with Dirichlet boundary condition and a superquintic power nonlinearity. We classify all radial stationary solutions, and prove that all radial global solutions are asymptotically the sum of a stationary solution and a radiation term.

[1]  N. Burq,et al.  Global Strichartz Estimates for Nontrapping Geometries: About an Article by H. Smith and C. Sogge , 2002, math/0210277.

[2]  P. Alam ‘A’ , 2021, Composites Engineering: An A–Z Guide.

[3]  Matthew D. Blair,et al.  Strichartz estimates for the wave equation on manifolds with boundary , 2008, 0805.4733.

[4]  H. Jia,et al.  Long Time Dynamics of Defocusing Energy Critical 3 + 1 Dimensional Wave Equation with Potential in the Radial Case , 2014, 1403.5696.

[5]  Ruipeng Shen On the Energy Subcritical, Non-linear Wave Equation with Radial Data for $p\in (3,5)$ , 2012, 1208.2108.

[6]  W. Schlag,et al.  Generic and non-generic behavior of solutions to the defocusing energy critical wave equation with potential in the radial case , 2015, 1506.04763.

[7]  Howard A. Levine,et al.  Instability and Nonexistence of Global Solutions to Nonlinear Wave Equations , 1974 .

[8]  Thomas Duyckaerts,et al.  Blow-up of the critical Sobolev norm for nonscattering radial solutions of supercritical wave equations on $\mathbb{R}^{3}$ , 2015, 1506.00788.

[9]  T. Cazenave,et al.  Scattering for the focusing energy-subcritical nonlinear Schrödinger equation , 2011 .

[10]  W. Schlag,et al.  Global center stable manifold for the defocusing energy critical wave equation with potential , 2017, American Journal of Mathematics.

[11]  P. Alam ‘W’ , 2021, Composites Engineering.

[12]  R. Fowler FURTHER STUDIES OF EMDEN'S AND SIMILAR DIFFERENTIAL EQUATIONS , 1931 .

[13]  Kenji Nakanishi,et al.  Invariant Manifolds and Dispersive Hamiltonian Evolution Equations , 2011 .

[14]  F. Shakra Asymptotics of the critical non-linear wave equation for a class of non star-shaped obstacles , 2012, 1206.0272.

[15]  James Ralston,et al.  Decay of solutions of the wave equation outside nontrapping obstacles , 1977 .

[16]  Hart F. Smith,et al.  On the critical semilinear wave equation outside convex obstacles , 1995 .

[17]  Global Strichartz estimates for solutions to the wave equation exterior to a convex obstacle , 2002, math/0210227.

[18]  David Lafontaine,et al.  Scattering for critical radial Neumann waves outside a ball , 2020, Revista Matemática Iberoamericana.

[19]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[20]  F. Merle,et al.  Scattering norm estimate near the threshold for energy-critical focusing semilinear wave equation , 2008, 0807.2916.

[21]  F. Merle,et al.  Classification of radial solutions of the focusing, energy-critical wave equation , 2012, 1204.0031.

[22]  M. Weinstein Nonlinear Schrödinger equations and sharp interpolation estimates , 1983 .

[23]  N. Burq Décroissance de l'énergie locale de l'équation des ondes pour le problème extérieur et absence de résonance au voisinage du réel , 1998 .

[24]  D. Lafontaine Strichartz estimates without loss outside two strictly convex obstacles , 2017, 1709.03836.

[25]  Piero D'Ancona,et al.  On the supercritical defocusing NLW outside a ball , 2019, Analysis and Mathematical Physics.

[26]  W. Schlag,et al.  Large global solutions for energy supercritical nonlinear wave equations on ℝ3+1 , 2014, 1403.2913.

[27]  F. Merle,et al.  Scattering for radial, bounded solutions of focusing supercritical wave equations , 2012, 1208.2158.

[28]  F. Merle,et al.  Universality of blow-up profile for small radial type II blow-up solutions of energy-critical wave equation , 2009, 0910.2594.

[29]  Carlos E. Kenig,et al.  Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case , 2006 .

[30]  Hart F. Smith,et al.  Global strichartz estimates for nonthapping perturbations of the laplacian , 1999, math/9912204.

[31]  C. Kenig,et al.  Relaxation of Wave Maps Exterior to a Ball to Harmonic Maps for All Data , 2013, 1301.0817.

[32]  Frank Merle,et al.  Dynamic of Threshold Solutions for Energy-Critical NlS , 2007, 0710.5915.

[33]  Thomas de Quincey [C] , 2000, The Works of Thomas De Quincey, Vol. 1: Writings, 1799–1820.

[34]  I. T. Kiguradze,et al.  Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations , 1992 .

[35]  M. Maliborski,et al.  Dynamics at the threshold for blowup for supercritical wave equations outside a ball , 2019, Nonlinearity.

[36]  Thomas Duyckaerts,et al.  Blow-up of a critical Sobolev norm for energy-subcritical and energy-supercritical wave equations , 2017, 1703.05168.

[37]  P. Alam,et al.  H , 1887, High Explosives, Propellants, Pyrotechnics.

[38]  F. Merle,et al.  Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation , 2006, math/0610801.

[39]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.