Effect of nano-scale particles on the creep behavior of 2014 Al

[1]  Yong Li,et al.  Creep and substructure in 5 vol.% SiC–2124 Al composite , 2002 .

[2]  F. Mohamed Correlation between creep behavior in Al-based solid solution alloys and powder metallurgy Al alloys , 1998 .

[3]  Y. Li An investigation of creep and substructure formation in 2124 Al , 1997 .

[4]  R. Mishra,et al.  The threshold stress for creep controlled by dislocation-particle interaction , 1994 .

[5]  E. Lavernia,et al.  High-temperature deformation of 6061 Al , 1994 .

[6]  Y. Mahajan,et al.  Steady state creep behaviour of silicon carbide particulate reinforced aluminium composites , 1992 .

[7]  E. Lavernia,et al.  Creep behavior of discontinuous SiCAl composites , 1992 .

[8]  E. Lavernia,et al.  High temperature creep of silicon carbide particulate reinforced aluminum , 1990 .

[9]  Joachim Rösler,et al.  A new model-based creep equation for dispersion strengthened materials , 1990 .

[10]  E. Arzt,et al.  The kinetics of dislocation climb over hard particles—II. Effects of an attractive particle-dislocation interaction , 1988 .

[11]  T. Nieh,et al.  Mechanical Properties of Discontinuous SiC Reinforced Aluminum Composites at Elevated Temperatures , 1988 .

[12]  M. Taya,et al.  Second Stage Creep of SiC Whisker/6061 Aluminum Composite at 573K , 1988 .

[13]  M. J. Luton,et al.  Dislocation/particle interactions in an oxide dispersion strengthened alloy , 1988 .

[14]  F. Mohamed,et al.  Creep and ductility in an Al-Cu solid-solution alloy , 1987 .

[15]  V. Nardone,et al.  Analysis of the creep behavior of silicon carbide whisker reinforced 2124 Al(T4) , 1987 .

[16]  E. Arzt,et al.  Threshold stresses for dislocation climb over hard particles: The effect of an attractive interaction , 1986 .

[17]  E. Arzt,et al.  Weak beam studies of dislocation/dispersoid interaction in an ods superalloy , 1985 .

[18]  F. Mohamed,et al.  Creep transitions in an Al-Zn alloy , 1984 .

[19]  T. Nieh Creep rupture of a silicon carbide reinforced aluminum composite , 1984 .

[20]  J. Tien,et al.  Pinning of dislocations on the departure side of strengthening dispersoids , 1983 .

[21]  T. Langdon,et al.  An examination of the breakdown in creep by viscous glide in solid solution alloys at high stress levels , 1982 .

[22]  T. Langdon,et al.  Creep and substructure formation in an Al-5% Mg solid solution alloy , 1981 .

[23]  F. Mohamed Creep behavior of solid solution alloys , 1979 .

[24]  W. Nix,et al.  High temperature creep of Ni-20Cr-2ThO2 single crystals , 1976 .

[25]  T. Langdon,et al.  The transition from dislocation climb to viscous glide in creep of solid solution alloys , 1974 .

[26]  K. Murty Transitional creep mechanisms in Al-5Mg at high stresses , 1973 .

[27]  J. E. Dorn,et al.  Viscous glide, dislocation climb and newtonian viscous deformation mechanisms of high temperature creep in Al-3Mg , 1972 .

[28]  B. A. Wilcox,et al.  The role of grain size and shape in strengthening of dispersion hardened nickel alloys , 1972 .

[29]  Oleg D. Sherby,et al.  Mechanical behavior of crystalline solids at elevated temperature , 1968 .

[30]  J. Weertman,et al.  Steady-State Creep of Crystals , 1957 .

[31]  G. A. Woonton,et al.  Current and Velocity Fluctuations at the Anode of an Electron Gun , 1957 .

[32]  J. Weertman,et al.  Theory of Steady‐State Creep Based on Dislocation Climb , 1955 .