Fast, High-Fidelity Conditional-Phase Gate Exploiting Leakage Interference in Weakly Anharmonic Superconducting Qubits.

Conditional-phase (cz) gates in transmons can be realized by flux pulsing computational states towards resonance with noncomputational ones. We present a 40 ns cz gate based on a bipolar flux pulse suppressing leakage (0.1%) by interference and approaching the speed limit set by exchange coupling. This pulse harnesses a built-in echo to enhance fidelity (99.1%) and is robust to long-timescale distortion in the flux-control line, ensuring repeatability. Numerical simulations matching experiment show that fidelity is limited by high-frequency dephasing and leakage by short-timescale distortion.

[1]  R. Barends,et al.  Superconducting quantum circuits at the surface code threshold for fault tolerance , 2014, Nature.

[2]  Andrew W. Cross,et al.  Leakage suppression in the toric code , 2014, 2015 IEEE International Symposium on Information Theory (ISIT).

[3]  C. K. Andersen,et al.  Entanglement stabilization using ancilla-based parity detection and real-time feedback in superconducting circuits , 2019, npj Quantum Information.

[4]  H. Neven,et al.  Characterizing quantum supremacy in near-term devices , 2016, Nature Physics.

[5]  L. DiCarlo,et al.  Demonstration of two-qubit algorithms with a superconducting quantum processor , 2009, Nature.

[6]  J. Martinis,et al.  Fast adiabatic qubit gates using only σ z control , 2014, 1402.5467.

[7]  Robert König,et al.  Quantum advantage with shallow circuits , 2017, Science.

[8]  M. A. Rol,et al.  Restless Tuneup of High-Fidelity Qubit Gates , 2016, 1611.04815.

[9]  John M. Martinis,et al.  State preservation by repetitive error detection in a superconducting quantum circuit , 2015, Nature.

[10]  John M. Martinis,et al.  Qubit metrology for building a fault-tolerant quantum computer , 2015, npj Quantum Information.

[11]  P. Hakonen,et al.  Continuous-time monitoring of Landau-Zener interference in a cooper-pair box. , 2006, Physical review letters.

[12]  Maika Takita,et al.  Demonstration of Weight-Four Parity Measurements in the Surface Code Architecture. , 2016, Physical review letters.

[13]  K. Berggren,et al.  Mach-Zehnder Interferometry in a Strongly Driven Superconducting Qubit , 2005, Science.

[14]  M. A. Rol,et al.  Independent, extensible control of same-frequency superconducting qubits by selective broadcasting , 2015, npj Quantum Information.

[15]  Bei Zeng,et al.  16-qubit IBM universal quantum computer can be fully entangled , 2018, npj Quantum Information.

[16]  L. DiCarlo,et al.  Scalable Quantum Circuit and Control for a Superconducting Surface Code , 2016, 1612.08208.

[17]  H Neven,et al.  A blueprint for demonstrating quantum supremacy with superconducting qubits , 2017, Science.

[18]  M Steffen,et al.  Efficient measurement of quantum gate error by interleaved randomized benchmarking. , 2012, Physical review letters.

[19]  Blake R. Johnson,et al.  Controlling Photons in Superconducting Electrical Circuits , 2011 .

[20]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[21]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[22]  F. Nori,et al.  Landau-Zener-Stückelberg interferometry , 2009, 0911.1917.

[23]  Austin G. Fowler,et al.  Leakage-resilient approach to fault-tolerant quantum computing with superconducting elements , 2014, 1406.2404.

[24]  D. Russell,et al.  Parametrically Activated Entangling Gates Using Transmon Qubits , 2017, Physical Review Applied.

[25]  Austin G. Fowler,et al.  Coping with qubit leakage in topological codes , 2013, 1308.6642.

[26]  Antonio-José Almeida,et al.  NAT , 2019, Springer Reference Medizin.

[27]  John M. Martinis,et al.  Logic gates at the surface code threshold: Superconducting qubits poised for fault-tolerant quantum computing , 2014 .

[28]  P. Alam ‘L’ , 2021, Composites Engineering: An A–Z Guide.

[29]  M. F. Gonzalez-Zalba,et al.  A silicon-based single-electron interferometer coupled to a fermionic sea , 2017, 1708.09840.

[30]  M. Mariantoni,et al.  Surface codes: Towards practical large-scale quantum computation , 2012, 1208.0928.

[31]  Blake R. Johnson,et al.  Simple all-microwave entangling gate for fixed-frequency superconducting qubits. , 2011, Physical review letters.

[32]  J. Gambetta,et al.  Procedure for systematically tuning up cross-talk in the cross-resonance gate , 2016, 1603.04821.

[33]  P. Alam ‘T’ , 2021, Composites Engineering: An A–Z Guide.

[34]  Jay M. Gambetta,et al.  Quantification and characterization of leakage errors , 2017, 1704.03081.

[35]  Franco Nori,et al.  QuTiP 2: A Python framework for the dynamics of open quantum systems , 2012, Comput. Phys. Commun..

[36]  Austin G. Fowler,et al.  Understanding the effects of leakage in superconducting quantum-error-detection circuits , 2013, 1306.0925.

[37]  Barbara M. Terhal,et al.  Fault-tolerant quantum computation for local leakage faults , 2005, Quantum Inf. Comput..

[38]  S. Poletto,et al.  Detecting bit-flip errors in a logical qubit using stabilizer measurements , 2014, Nature Communications.

[39]  A. Gossard,et al.  A Coherent Beam Splitter for Electronic Spin States , 2010, Science.

[40]  Frederick W Strauch,et al.  Quantum logic gates for coupled superconducting phase qubits. , 2003, Physical review letters.

[41]  C. K. Andersen,et al.  Rapid High-fidelity Multiplexed Readout of Superconducting Qubits , 2018, Physical Review Applied.