Connectome Smoothing via Low-Rank Approximations

In brain imaging and connectomics, the study of brain networks, estimating the mean of a population of graphs based on a sample is a core problem. Often, this problem is especially difficult because the sample or cohort size is relatively small, sometimes even a single subject, while the number of nodes can be very large with noisy estimates of connectivity. While the element-wise sample mean of the adjacency matrices is a common approach, this method does not exploit the underlying structural properties of the graphs. We propose using a low-rank method that incorporates dimension selection and diagonal augmentation to smooth the estimates and improve performance over the naïve methodology for small sample sizes. Theoretical results for the stochastic block model show that this method offers major improvements when there are many vertices. Similarly, we demonstrate that the low-rank methods outperform the standard sample mean for a variety of independent edge distributions as well as human connectome data derived from the magnetic resonance imaging, especially when the sample sizes are small. Moreover, the low-rank methods yield “eigen-connectomes,” which correlate with the lobe-structure of the human brain and superstructures of the mouse brain. These results indicate that the low-rank methods are the important parts of the toolbox for researchers studying populations of graphs in general and statistical connectomics in particular.

[1]  C. Priebe,et al.  Perfect Clustering for Stochastic Blockmodel Graphs via Adjacency Spectral Embedding , 2013, 1310.0532.

[2]  Rex E. Jung,et al.  MIGRAINE: MRI Graph Reliability Analysis and Inference for Connectomics , 2013, 2013 IEEE Global Conference on Signal and Information Processing.

[3]  Bruce Fischl,et al.  FreeSurfer , 2012, NeuroImage.

[4]  C. Priebe,et al.  Consistency of adjacency spectral embedding for the mixed membership stochastic blockmodel , 2017, 1705.04518.

[5]  Anders M. Dale,et al.  An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest , 2006, NeuroImage.

[6]  Horst Bunke,et al.  On Median Graphs: Properties, Algorithms, and Applications , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Michael W. Berry,et al.  Algorithms and applications for approximate nonnegative matrix factorization , 2007, Comput. Stat. Data Anal..

[8]  Carey E. Priebe,et al.  Limit theorems for eigenvectors of the normalized Laplacian for random graphs , 2016, The Annals of Statistics.

[9]  Anirban Banerjee,et al.  Spectral plots and the representation and interpretation of biological data , 2007, Theory in Biosciences.

[10]  Mark W. Woolrich,et al.  Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? , 2007, NeuroImage.

[11]  Peter D. Hoff,et al.  Latent Space Approaches to Social Network Analysis , 2002 .

[12]  Gerard V. Trunk,et al.  A Problem of Dimensionality: A Simple Example , 1979, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[13]  C. Nickel RANDOM DOT PRODUCT GRAPHS A MODEL FOR SOCIAL NETWORKS , 2008 .

[14]  Elizabeth Jefferies,et al.  Situating the default-mode network along a principal gradient of macroscale cortical organization , 2016, Proceedings of the National Academy of Sciences.

[15]  Martijn P. van den Heuvel,et al.  The Laplacian spectrum of neural networks , 2014, Front. Comput. Neurosci..

[16]  Li Qingyang,et al.  Towards Automated Analysis of Connectomes: The Configurable Pipeline for the Analysis of Connectomes (C-PAC) , 2013 .

[17]  P. Szeszko,et al.  MRI atlas of human white matter , 2006 .

[18]  C. Eckart,et al.  The approximation of one matrix by another of lower rank , 1936 .

[19]  NeuroData,et al.  Towards Automated Analysis of Connectomes: The Configurable Pipeline for the Analysis of Connectomes , 2015 .

[20]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[21]  Selen Atasoy,et al.  Human brain networks function in connectome-specific harmonic waves , 2016, Nature Communications.

[22]  Sharmodeep Bhattacharyya,et al.  Spectral Clustering for Multiple Sparse Networks: I , 2018, ArXiv.

[23]  Gerald G. Brown,et al.  Means and Variances of Stochastic Vector Products with Applications to Random Linear Models , 1977 .

[24]  Mark E. J. Newman,et al.  Stochastic blockmodels and community structure in networks , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  G. Johnson,et al.  A Diffusion MRI Tractography Connectome of the Mouse Brain and Comparison with Neuronal Tracer Data , 2015, Cerebral cortex.

[26]  S. Wakana,et al.  MRI Atlas of Human White Matter , 2005 .

[27]  C. Stein Inadmissibility of the Usual Estimator for the Mean of a Multivariate Normal Distribution , 1956 .

[28]  C. Priebe,et al.  Vertex nomination via attributed random dot product graphs , 2011 .

[29]  Jerry L Prince,et al.  Magnetic Resonance Connectome Automated Pipeline: An Overview , 2012, IEEE Pulse.

[30]  Kjell A. Doksum,et al.  Mathematical Statistics: Basic Ideas and Selected Topics, Volume I, Second Edition , 2015 .

[31]  John Nolte,et al.  The Human Brain An Introduction to Its Functional Anatomy , 2013 .

[32]  Krzysztof J. Gorgolewski,et al.  A high resolution 7-Tesla resting-state fMRI test-retest dataset with cognitive and physiological measures , 2014, Scientific Data.

[33]  Maxime Descoteaux,et al.  Dipy, a library for the analysis of diffusion MRI data , 2014, Front. Neuroinform..

[34]  Béla Bollobás,et al.  Random Graphs , 1985 .

[35]  Carey E. Priebe,et al.  Journal of the American Statistical Association Maximum Lq-likelihood Estimation via the Expectation-maximization Algorithm: a Robust Estimation of Mixture Models Maximum Lq-likelihood Estimation via the Expectation-maximization Algorithm: a Robust Estimation of Mixture Models , 2022 .

[36]  B. Bollobás The evolution of random graphs , 1984 .

[37]  Carey E. Priebe,et al.  Universally Consistent Latent Position Estimation and Vertex Classification for Random Dot Product Graphs , 2012, 1207.6745.

[38]  A. Dale,et al.  Thinning of the cerebral cortex in aging. , 2004, Cerebral cortex.

[39]  Kathryn B. Laskey,et al.  Stochastic blockmodels: First steps , 1983 .

[40]  Sam Gutmann,et al.  Stein's Paradox is Impossible in Problems with Finite Sample Space , 1982 .

[41]  Youngser Park,et al.  Automatic Dimension Selection for a Non-negative Factorization Approach to Clustering Multiple Random Graphs , 2014 .

[42]  C. Priebe,et al.  A Limit Theorem for Scaled Eigenvectors of Random Dot Product Graphs , 2013, Sankhya A.

[43]  Edward R. Scheinerman,et al.  Random Dot Product Graph Models for Social Networks , 2007, WAW.

[44]  Gaël Varoquaux,et al.  Population-Shrinkage of Covariance to Estimate Better Brain Functional Connectivity , 2017, MICCAI.

[45]  Dimitris Samaras,et al.  Extracting Brain Regions from Rest fMRI with Total-Variation Constrained Dictionary Learning , 2013, MICCAI.

[46]  Carey E. Priebe,et al.  Consistent Adjacency-Spectral Partitioning for the Stochastic Block Model When the Model Parameters Are Unknown , 2012, SIAM J. Matrix Anal. Appl..

[47]  Christos Boutsidis,et al.  SVD based initialization: A head start for nonnegative matrix factorization , 2008, Pattern Recognit..

[48]  Bing Chen,et al.  An open science resource for establishing reliability and reproducibility in functional connectomics , 2014, Scientific Data.

[49]  Eric R. Ziegel,et al.  The Elements of Statistical Learning , 2003, Technometrics.

[50]  Béla Bollobás,et al.  The phase transition in inhomogeneous random graphs , 2007, Random Struct. Algorithms.

[51]  Brian B. Avants,et al.  An HPC Pipeline with Validation Framework for Small Animal Multivariate Brain Analysis (SAMBA) , 2017, ArXiv.

[52]  Carey E. Priebe,et al.  Robust Estimation from Multiple Graphs under Gross Error Contamination , 2017, 1707.03487.

[53]  C. Stein,et al.  Estimation with Quadratic Loss , 1992 .

[54]  Gregory Kiar,et al.  ndmg: NeuroData's MRI Graphs pipeline , 2016 .

[55]  Jun Li,et al.  Hypothesis Testing For Network Data in Functional Neuroimaging , 2014, 1407.5525.

[56]  Brian Litt,et al.  Science in the cloud (SIC): A use case in MRI connectomics , 2016, GigaScience.

[57]  Stephen P. Boyd,et al.  Generalized Low Rank Models , 2014, Found. Trends Mach. Learn..

[58]  Edward R. Scheinerman,et al.  Modeling graphs using dot product representations , 2010, Comput. Stat..

[59]  Daniele Durante,et al.  Nonparametric Bayes Modeling of Populations of Networks , 2014, 1406.7851.

[60]  Mu Zhu,et al.  Automatic dimensionality selection from the scree plot via the use of profile likelihood , 2006, Comput. Stat. Data Anal..

[61]  S. Chatterjee,et al.  Matrix estimation by Universal Singular Value Thresholding , 2012, 1212.1247.

[62]  P. Erdos,et al.  On the evolution of random graphs , 1984 .

[63]  Edoardo M. Airoldi,et al.  Mixed Membership Stochastic Blockmodels , 2007, NIPS.

[64]  Carey E. Priebe,et al.  Joint Embedding of Graphs , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[65]  J. Pekar,et al.  A method for making group inferences from functional MRI data using independent component analysis , 2001, Human brain mapping.