Alternative c-means clustering algorithms

Abstract In this paper we propose a new metric to replace the Euclidean norm in c-means clustering procedures. On the basis of the robust statistic and the influence function, we claim that the proposed new metric is more robust than the Euclidean norm. We then create two new clustering methods called the alternative hard c-means (AHCM) and alternative fuzzy c-means (AFCM) clustering algorithms. These alternative types of c-means clustering have more robustness than c-means clustering. Numerical results show that AHCM has better performance than HCM and AFCM is better than FCM. We recommend AFCM for use in cluster analysis. Recently, this AFCM algorithm has successfully been used in segmenting the magnetic resonance image of Ophthalmology to differentiate the abnormal tissues from the normal tissues.

[1]  W. Rudin Principles of mathematical analysis , 1964 .

[2]  James M. Keller,et al.  A possibilistic approach to clustering , 1993, IEEE Trans. Fuzzy Syst..

[3]  Peter E. Hart,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[4]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[5]  Miin-Shen Yang A survey of fuzzy clustering , 1993 .

[6]  R. Davé FUZZY SHELL-CLUSTERING AND APPLICATIONS TO CIRCLE DETECTION IN DIGITAL IMAGES , 1990 .

[7]  Ali S. Hadi,et al.  Finding Groups in Data: An Introduction to Chster Analysis , 1991 .

[8]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[9]  Isak Gath,et al.  Unsupervised Optimal Fuzzy Clustering , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  B. Ripley,et al.  Pattern Recognition , 1968, Nature.

[11]  J. C. Dunn,et al.  A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters , 1973 .

[12]  Miin Shen Yang,et al.  Segmentation techniques for tissue differentiation in MRI of ophthalmology using fuzzy clustering algorithms. , 2002, Magnetic resonance imaging.

[13]  B. Ripley,et al.  Robust Statistics , 2018, Encyclopedia of Mathematical Geosciences.

[14]  Frederick R. Forst,et al.  On robust estimation of the location parameter , 1980 .

[15]  Miin-Shen Yang,et al.  On cluster-wise fuzzy regression analysis , 1997, IEEE Trans. Syst. Man Cybern. Part B.