Boundary estimates for superharmonic functions and solutions of semilinear elliptic equations with source

[1]  K. Hirata TWO-SIDED ESTIMATES FOR POSITIVE SOLUTIONS OF SUPERLINEAR ELLIPTIC BOUNDARY VALUE PROBLEMS , 2018, Bulletin of the Australian Mathematical Society.

[2]  K. Hirata Positive solutions with a time-independent boundary singularity of semilinear heat equations in bounded Lipschitz domains , 2016 .

[3]  K. Hirata Properties of superharmonic functions satisfying nonlinear inequalities in nonsmooth domains , 2010 .

[4]  M. Marcus,et al.  Boundary trace of positive solutions of semilinear elliptic equations in Lipschitz domains: the subcritical case , 2009, 0907.1006.

[5]  K. Hirata Global Estimates for Non-symmetric Green Type Functions with Applications to the p-Laplace Equation , 2008 .

[6]  P. Polácik,et al.  Singularity and decay estimates in superlinear problems via Liouville-type theorems, I: Elliptic equations and systems , 2007 .

[7]  John L. Lewis,et al.  Boundary behaviour for p-harmonic functions in Lipschitz and starlike Lipschitz ring domains , 2007 .

[8]  P. J. McKenna,et al.  A priori bounds for semilinear equations and a new class of critical exponents for Lipschitz domains , 2007 .

[9]  T. Kilpeläinen,et al.  Boundary Harnack Principle for p-harmonic Functions in Smooth Euclidean Domains , 2007 .

[10]  L. Véron,et al.  Boundary Harnack Inequality and a Priori Estimates of Singular Solutions of Quasilinear Elliptic Equations , 2006, math/0610017.

[11]  Hiroaki Aikawa Potential‐Theoretic Characterizations of Nonsmooth Domains , 2004 .

[12]  T. Lundh,et al.  Martin Boundary of a Fractal Domain , 2003 .

[13]  L. Vivier,et al.  An elliptic semilinear equation with source term involving boundary measures: the subcritical case , 2000 .

[14]  K. Bogdan Sharp Estimates for the Green Function in Lipschitz Domains , 2000 .

[15]  N. Suzuki,et al.  The Integrability of Superharmonic Functions on Lipschitz Domains , 1989 .

[16]  P. Bauman Positive solutions of elliptic equations in nondivergence form and their adjoints , 1984 .

[17]  Carlos E. Kenig,et al.  Boundary behavior of harmonic functions in non-tangentially accessible domains , 1982 .

[18]  Björn E. J. Dahlberg,et al.  Estimates of harmonic measure , 1977 .

[19]  J. T. Kemper A boundary harnack principle for lipschitz domains and the principle of positive singularities , 1972 .

[20]  T. Lundh,et al.  Martin boundary points of a John domain and unions of convex sets , 2006 .

[21]  Hiroaki Aikawa Boundary Harnack principle and Martin boundary for a uniform domain , 2001 .

[22]  A. Ancona Une propriété de la compactification de Martin d'un domaine euclidien , 1979 .

[23]  A. Ancona Principe de Harnack à la frontière et théorème de Fatou pour un opérateur elliptique dans un domaine lipschitzien , 1978 .

[24]  J. Wu Comparisons of kernel functions, boundary Harnack principle and relative Fatou theorem on Lipschitz domains , 1978 .

[25]  Linda Naïm Sur le rôle de la frontière de R. S. Martin dans la théorie du potentiel , 1957 .