Boundary estimates for superharmonic functions and solutions of semilinear elliptic equations with source
暂无分享,去创建一个
[1] K. Hirata. TWO-SIDED ESTIMATES FOR POSITIVE SOLUTIONS OF SUPERLINEAR ELLIPTIC BOUNDARY VALUE PROBLEMS , 2018, Bulletin of the Australian Mathematical Society.
[2] K. Hirata. Positive solutions with a time-independent boundary singularity of semilinear heat equations in bounded Lipschitz domains , 2016 .
[3] K. Hirata. Properties of superharmonic functions satisfying nonlinear inequalities in nonsmooth domains , 2010 .
[4] M. Marcus,et al. Boundary trace of positive solutions of semilinear elliptic equations in Lipschitz domains: the subcritical case , 2009, 0907.1006.
[5] K. Hirata. Global Estimates for Non-symmetric Green Type Functions with Applications to the p-Laplace Equation , 2008 .
[6] P. Polácik,et al. Singularity and decay estimates in superlinear problems via Liouville-type theorems, I: Elliptic equations and systems , 2007 .
[7] John L. Lewis,et al. Boundary behaviour for p-harmonic functions in Lipschitz and starlike Lipschitz ring domains , 2007 .
[8] P. J. McKenna,et al. A priori bounds for semilinear equations and a new class of critical exponents for Lipschitz domains , 2007 .
[9] T. Kilpeläinen,et al. Boundary Harnack Principle for p-harmonic Functions in Smooth Euclidean Domains , 2007 .
[10] L. Véron,et al. Boundary Harnack Inequality and a Priori Estimates of Singular Solutions of Quasilinear Elliptic Equations , 2006, math/0610017.
[11] Hiroaki Aikawa. Potential‐Theoretic Characterizations of Nonsmooth Domains , 2004 .
[12] T. Lundh,et al. Martin Boundary of a Fractal Domain , 2003 .
[13] L. Vivier,et al. An elliptic semilinear equation with source term involving boundary measures: the subcritical case , 2000 .
[14] K. Bogdan. Sharp Estimates for the Green Function in Lipschitz Domains , 2000 .
[15] N. Suzuki,et al. The Integrability of Superharmonic Functions on Lipschitz Domains , 1989 .
[16] P. Bauman. Positive solutions of elliptic equations in nondivergence form and their adjoints , 1984 .
[17] Carlos E. Kenig,et al. Boundary behavior of harmonic functions in non-tangentially accessible domains , 1982 .
[18] Björn E. J. Dahlberg,et al. Estimates of harmonic measure , 1977 .
[19] J. T. Kemper. A boundary harnack principle for lipschitz domains and the principle of positive singularities , 1972 .
[20] T. Lundh,et al. Martin boundary points of a John domain and unions of convex sets , 2006 .
[21] Hiroaki Aikawa. Boundary Harnack principle and Martin boundary for a uniform domain , 2001 .
[22] A. Ancona. Une propriété de la compactification de Martin d'un domaine euclidien , 1979 .
[23] A. Ancona. Principe de Harnack à la frontière et théorème de Fatou pour un opérateur elliptique dans un domaine lipschitzien , 1978 .
[24] J. Wu. Comparisons of kernel functions, boundary Harnack principle and relative Fatou theorem on Lipschitz domains , 1978 .
[25] Linda Naïm. Sur le rôle de la frontière de R. S. Martin dans la théorie du potentiel , 1957 .