A highly sensitive mean-reverting process in finance and the Euler-Maruyama approximations

[1]  Oldrich A. Vasicek An equilibrium characterization of the term structure , 1977 .

[2]  Stephen A. Ross,et al.  An Analysis of Variable Rate Loan Contracts , 1980 .

[3]  Eduardo S. Schwartz,et al.  Analyzing Convertible Bonds , 1980, Journal of Financial and Quantitative Analysis.

[4]  Terry A. Marsh,et al.  Stochastic Processes for Interest Rates and Equilibrium Bond Prices , 1983 .

[5]  S. Ross,et al.  A theory of the term structure of interest rates'', Econometrica 53, 385-407 , 1985 .

[6]  John B. Donaldson,et al.  On the term structure of interest rates , 1990 .

[7]  Campbell R. Harvey,et al.  An Empirical Comparison of Alternative Models of the Short-Term Interest Rate , 1992 .

[8]  K. Nowman,et al.  Gaussian Estimation of Single‐Factor Continuous Time Models of The Term Structure of Interest Rates , 1997 .

[9]  Xuerong Mao,et al.  Stochastic differential equations and their applications , 1997 .

[10]  X. Mao,et al.  Stochastic Differential Equations and Applications , 1998 .

[11]  T. Alderweireld,et al.  A Theory for the Term Structure of Interest Rates , 2004, cond-mat/0405293.

[12]  D. Higham,et al.  Convergence of Monte Carlo Simulations involving the Mean-Reverting Square Root Process , 2005 .

[13]  R. C. Merton,et al.  Theory of Rational Option Pricing , 2015, World Scientific Reference on Contingent Claims Analysis in Corporate Finance.

[14]  X. Mao,et al.  Euler-Maruyama approximations in mean-reverting stochastic volatility model under regime-switching , 2006 .

[15]  Y. Kwok Mathematical models of financial derivatives , 2008 .