Binary Linear Codes with Optimal Scaling: Polar Codes with Large Kernels

We prove that, at least for the binary erasure channel, the polar-coding paradigm gives rise to codes that not only approach the Shannon limit but, in fact, do so under the best possible scaling of their block length as a function of the gap to capacity. This result exhibits the first known family of binary codes that attain both optimal scaling and quasi-linear complexity of encoding and decoding. Specifically, for any fixed $\delta \gt 0$, we exhibit binary linear codes that ensure reliable communication at rates within $\epsilon \gt 0$ of capacity with block length $n = O(1/\epsilon^{2+\delta})$, construction complexity $\Theta(n)$, and encoding/decoding complexity $\Theta(n\log n)$.

[1]  Rüdiger L. Urbanke,et al.  Polar Codes: Characterization of Exponent, Bounds, and Constructions , 2010, IEEE Transactions on Information Theory.

[2]  Rüdiger L. Urbanke,et al.  Unified scaling of polar codes: Error exponent, scaling exponent, moderate deviations, and error floors , 2015, 2015 IEEE International Symposium on Information Theory (ISIT).

[3]  W. Hoeffding Probability Inequalities for sums of Bounded Random Variables , 1963 .

[4]  R. Dobrushin Mathematical Problems in the Shannon Theory of Optimal Coding of Information , 1961 .

[5]  Rüdiger L. Urbanke,et al.  Almost Optimal Scaling of Reed-Muller Codes on BEC and BSC Channels , 2018, 2018 IEEE International Symposium on Information Theory (ISIT).

[6]  Rüdiger L. Urbanke,et al.  Polar codes: Characterization of exponent, bounds, and constructions , 2009, 2009 IEEE International Symposium on Information Theory.

[7]  Alexander Vardy,et al.  Achieving the Secrecy Capacity of Wiretap Channels Using Polar Codes , 2010, IEEE Transactions on Information Theory.

[8]  Rüdiger L. Urbanke,et al.  From polar to Reed-Muller codes: A technique to improve the finite-length performance , 2014, 2014 IEEE International Symposium on Information Theory.

[9]  Rüdiger L. Urbanke,et al.  The compound capacity of polar codes , 2009, 2009 47th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[10]  Rüdiger L. Urbanke,et al.  Spatially coupled ensembles universally achieve capacity under belief propagation , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[11]  Erdal Arikan,et al.  Channel Polarization: A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless Channels , 2008, IEEE Transactions on Information Theory.

[12]  Rüdiger L. Urbanke,et al.  Finite-Length Scaling for Polar Codes , 2013, IEEE Transactions on Information Theory.

[13]  Rüdiger L. Urbanke,et al.  How to Achieve the Capacity of Asymmetric Channels , 2018, IEEE Trans. Inf. Theory.

[14]  Rüdiger L. Urbanke,et al.  Polar Codes are Optimal for Lossy Source Coding , 2009, IEEE Transactions on Information Theory.

[15]  Alexander Vardy,et al.  List Decoding of Polar Codes , 2015, IEEE Transactions on Information Theory.

[16]  Santhosh Kumar,et al.  Reed–Muller Codes Achieve Capacity on Erasure Channels , 2015, IEEE Transactions on Information Theory.

[17]  Jungwon Lee,et al.  Performance Limits and Practical Decoding of Interleaved Reed-Solomon Polar Concatenated Codes , 2013, IEEE Transactions on Communications.

[18]  Vera Miloslavskaya,et al.  Design of binary polar codes with arbitrary kernel , 2012, 2012 IEEE Information Theory Workshop.

[19]  Arman Fazeli,et al.  Binary Linear Codes with Optimal Scaling and Quasi-Linear Complexity , 2017, ArXiv.

[20]  Gilles Zémor,et al.  Discrete Isoperimetric Inequalities and the Probability of a Decoding Error , 2000, Combinatorics, Probability and Computing.

[21]  Rüdiger L. Urbanke,et al.  Polar Codes for Channel and Source Coding , 2009, ArXiv.

[22]  Eren Sasoglu,et al.  A class of transformations that polarize binary-input memoryless channels , 2009, 2009 IEEE International Symposium on Information Theory.

[23]  H. Vincent Poor,et al.  Channel Coding Rate in the Finite Blocklength Regime , 2010, IEEE Transactions on Information Theory.

[24]  Alexander Vardy,et al.  Hardware Implementation of Successive-Cancellation Decoders for Polar Codes , 2012, J. Signal Process. Syst..

[25]  Onur Ozan Koyluoglu,et al.  Polar coding for secure transmission and key agreement , 2010, 21st Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications.

[26]  Masahito Hayashi,et al.  Information Spectrum Approach to Second-Order Coding Rate in Channel Coding , 2008, IEEE Transactions on Information Theory.

[27]  Paul H. Siegel,et al.  Permuted successive cancellation decoding for polar codes , 2017, 2017 IEEE International Symposium on Information Theory (ISIT).

[28]  Rüdiger L. Urbanke,et al.  Scaling Exponent of List Decoders With Applications to Polar Codes , 2013, IEEE Transactions on Information Theory.

[29]  Rudiger Urbanke,et al.  Scaling Exponent of List Decoders With Applications to Polar Codes , 2015, IEEE Trans. Inf. Theory.

[30]  Warren J. Gross,et al.  A Semi-Parallel Successive-Cancellation Decoder for Polar Codes , 2013, IEEE Transactions on Signal Processing.

[31]  Alexander Vardy,et al.  Maximum-Likelihood Soft Decision Decoding of Bch Codes , 1993, Proceedings. IEEE International Symposium on Information Theory.

[32]  Rüdiger L. Urbanke,et al.  Construction of polar codes with sublinear complexity , 2016, 2017 IEEE International Symposium on Information Theory (ISIT).

[33]  Emre Telatar,et al.  On the rate of channel polarization , 2008, 2009 IEEE International Symposium on Information Theory.

[34]  Rüdiger L. Urbanke,et al.  Achieving Marton's Region for Broadcast Channels Using Polar Codes , 2015, IEEE Trans. Inf. Theory.

[35]  Jungwon Lee,et al.  Polar Coding for Bit-Interleaved Coded Modulation , 2016, IEEE Transactions on Vehicular Technology.

[36]  Arman Fazeli,et al.  Binary Linear Codes With Optimal Scaling: Polar Codes With Large Kernels , 2021, IEEE Transactions on Information Theory.

[37]  David Burshtein,et al.  Improved Bounds on the Finite Length Scaling of Polar Codes , 2013, IEEE Transactions on Information Theory.

[38]  Vera Miloslavskaya,et al.  Sequential decoding of polar codes with arbitrary binary kernel , 2014, 2014 IEEE Information Theory Workshop (ITW 2014).

[39]  Arman Fazeli Chaghooshi New Frontiers in Polar Coding: Large Kernels, Convolutional Decoding, and Deletion Channels , 2018 .

[40]  Rudiger Urbanke,et al.  From Polar to Reed-Muller Codes: A Technique to Improve the Finite-Length Performance , 2014, IEEE Trans. Commun..

[41]  Elwyn R. Berlekamp,et al.  On the inherent intractability of certain coding problems (Corresp.) , 1978, IEEE Trans. Inf. Theory.

[42]  Jungwon Lee,et al.  Achieving the Uniform Rate Region of General Multiple Access Channels by Polar Coding , 2013, IEEE Transactions on Communications.

[43]  Emre Telatar,et al.  On the construction of polar codes , 2011, 2011 IEEE International Symposium on Information Theory Proceedings.

[44]  Peter Trifonov,et al.  Efficient Design and Decoding of Polar Codes , 2012, IEEE Transactions on Communications.

[45]  Seyed Hamed Hassani Polarization and Spatial Coupling - Two Techniques to Boost Performance , 2013 .

[46]  Hossein Pishro-Nik,et al.  On Finite-Length Performance of Polar Codes: Stopping Sets, Error Floor, and Concatenated Design , 2012, IEEE Transactions on Communications.

[47]  Shlomo Shamai,et al.  Polar coding for reliable communications over parallel channels , 2010, 2010 IEEE Information Theory Workshop.

[48]  Andrea Montanari,et al.  Finite-Length Scaling for Iteratively Decoded LDPC Ensembles , 2004, IEEE Transactions on Information Theory.

[49]  Eren Sasoglu,et al.  Polarization and Polar Codes , 2012, Found. Trends Commun. Inf. Theory.

[50]  Shlomo Shamai,et al.  Secrecy-achieving polar-coding , 2010, 2010 IEEE Information Theory Workshop.

[51]  Toshiyuki Tanaka,et al.  Rate-Dependent Analysis of the Asymptotic Behavior of Channel Polarization , 2011, IEEE Transactions on Information Theory.

[52]  Andrea Montanari,et al.  An empirical scaling law for polar codes , 2010, 2010 IEEE International Symposium on Information Theory.

[53]  Arman Fazeli,et al.  On the scaling exponent of binary polarization kernels , 2014, 2014 52nd Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[54]  Alexander Vardy,et al.  How to Construct Polar Codes , 2011, IEEE Transactions on Information Theory.

[55]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .