Evolving Deep Neural Networks

[1]  Neuroevolution , 2020, Agile Artificial Intelligence in Pharo.

[2]  Yan Liu,et al.  Recurrent Neural Networks for Multivariate Time Series with Missing Values , 2016, Scientific Reports.

[3]  Risto Miikkulainen,et al.  Sentient Ascend: AI-Based Massively Multivariate Conversion Rate Optimization , 2018, AAAI.

[4]  Risto Miikkulainen,et al.  Conversion rate optimization through evolutionary computation , 2017, GECCO.

[5]  Samy Bengio,et al.  Context-Aware Captions from Context-Agnostic Supervision , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[6]  Quoc V. Le,et al.  Neural Architecture Search with Reinforcement Learning , 2016, ICLR.

[7]  Dumitru Erhan,et al.  Show and Tell: Lessons Learned from the 2015 MSCOCO Image Captioning Challenge , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[8]  Jürgen Schmidhuber,et al.  Recurrent Highway Networks , 2016, ICML.

[9]  Sergey Ioffe,et al.  Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning , 2016, AAAI.

[10]  Jürgen Schmidhuber,et al.  LSTM: A Search Space Odyssey , 2015, IEEE Transactions on Neural Networks and Learning Systems.

[11]  Fei-Fei Li,et al.  Deep visual-semantic alignments for generating image descriptions , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[12]  David Pfau,et al.  Convolution by Evolution: Differentiable Pattern Producing Networks , 2016, GECCO.

[13]  Jian Sun,et al.  Identity Mappings in Deep Residual Networks , 2016, ECCV.

[14]  Jiebo Luo,et al.  Image Captioning with Semantic Attention , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[15]  Frank Hutter,et al.  CMA-ES for Hyperparameter Optimization of Deep Neural Networks , 2016, ArXiv.

[16]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[17]  Sergey Ioffe,et al.  Rethinking the Inception Architecture for Computer Vision , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[18]  Alex Graves,et al.  Grid Long Short-Term Memory , 2015, ICLR.

[19]  Risto Miikkulainen,et al.  Evolutionary Bilevel Optimization for Complex Control Tasks , 2015, GECCO.

[20]  Wojciech Zaremba,et al.  An Empirical Exploration of Recurrent Network Architectures , 2015, ICML.

[21]  Xinlei Chen,et al.  Microsoft COCO Captions: Data Collection and Evaluation Server , 2015, ArXiv.

[22]  Matthew J. Hausknecht,et al.  Beyond short snippets: Deep networks for video classification , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[23]  Prabhat,et al.  Scalable Bayesian Optimization Using Deep Neural Networks , 2015, ICML.

[24]  Yoshua Bengio,et al.  Show, Attend and Tell: Neural Image Caption Generation with Visual Attention , 2015, ICML.

[25]  Yoshua Bengio,et al.  Gated Feedback Recurrent Neural Networks , 2015, ICML.

[26]  Samy Bengio,et al.  Show and tell: A neural image caption generator , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[27]  Yoshua Bengio,et al.  Neural Machine Translation by Jointly Learning to Align and Translate , 2014, ICLR.

[28]  Wojciech Zaremba,et al.  Recurrent Neural Network Regularization , 2014, ArXiv.

[29]  Kalyanmoy Deb,et al.  A bilevel optimization approach to automated parameter tuning , 2014, GECCO.

[30]  Navdeep Jaitly,et al.  Towards End-To-End Speech Recognition with Recurrent Neural Networks , 2014, ICML.

[31]  Yoshua Bengio,et al.  Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation , 2014, EMNLP.

[32]  Geoffrey E. Hinton,et al.  Speech recognition with deep recurrent neural networks , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[33]  Holger H. Hoos,et al.  Programming by optimization , 2012, Commun. ACM.

[34]  Shimon Whiteson,et al.  Neuroevolutionary reinforcement learning for generalized control of simulated helicopters , 2011, Evol. Intell..

[35]  Julian Togelius,et al.  Evolving Memory Cell Structures for Sequence Learning , 2009, ICANN.

[36]  Jason Weston,et al.  A unified architecture for natural language processing: deep neural networks with multitask learning , 2008, ICML '08.

[37]  Risto Miikkulainen,et al.  Accelerated Neural Evolution through Cooperatively Coevolved Synapses , 2008, J. Mach. Learn. Res..

[38]  Dario Floreano,et al.  Neuroevolution: from architectures to learning , 2008, Evol. Intell..

[39]  Kenneth O. Stanley,et al.  Compositional Pattern Producing Networks : A Novel Abstraction of Development , 2007 .

[40]  Pieter Abbeel,et al.  An Application of Reinforcement Learning to Aerobatic Helicopter Flight , 2006, NIPS.

[41]  S. Shankar Sastry,et al.  Autonomous Helicopter Flight via Reinforcement Learning , 2003, NIPS.

[42]  Christian Igel,et al.  Neuroevolution for reinforcement learning using evolution strategies , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[43]  Risto Miikkulainen,et al.  Evolving Neural Networks through Augmenting Topologies , 2002, Evolutionary Computation.

[44]  Jeff G. Schneider,et al.  Autonomous helicopter control using reinforcement learning policy search methods , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[45]  Simon Haykin,et al.  GradientBased Learning Applied to Document Recognition , 2001 .

[46]  Xin Yao,et al.  Evolving artificial neural networks , 1999, Proc. IEEE.

[47]  Risto Miikkulainen,et al.  Solving Non-Markovian Control Tasks with Neuro-Evolution , 1999, IJCAI.

[48]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[49]  Risto Miikkulainen,et al.  Forming Neural Networks Through Efficient and Adaptive Coevolution , 1997, Evolutionary Computation.

[50]  Jürgen Schmidhuber,et al.  Long Short-Term Memory , 1997, Neural Computation.

[51]  Risto Miikkulainen,et al.  Incremental Evolution of Complex General Behavior , 1997, Adapt. Behav..

[52]  L. Darrell Whitley,et al.  Adding Learning to the Cellular Development of Neural Networks: Evolution and the Baldwin Effect , 1993, Evolutionary Computation.

[53]  Beatrice Santorini,et al.  Building a Large Annotated Corpus of English: The Penn Treebank , 1993, CL.

[54]  Lawrence Davis,et al.  Training Feedforward Neural Networks Using Genetic Algorithms , 1989, IJCAI.

[55]  Geoffrey E. Hinton,et al.  How Learning Can Guide Evolution , 1996, Complex Syst..