AC performance of nanoelectronics: towards a ballistic THz nanotube transistor

We present phenomenological predictions for the cutoff frequency of carbon nanotube transistors. We also present predictions of the effects parasitic capacitances on AC nanotube transistor performance. The influence of quantum capacitance, kinetic inductance, and ballistic transport on the high-frequency properties of nanotube transistors is analyzed. We discuss the challenges of impedance matching for ac nano-electronics in general, and show how integrated nanosystems can solve this challenge. Our calculations show that carbon nano-electronics may be faster than conventional Si, SiGe, GaAs, or InP semiconductor technologies. We predict a cutoff frequency of 80 GHz/L, where L is the gate length in microns, opening up the possibility of a ballistic THz nanotube transistor.

[1]  P L McEuen,et al.  Electrical nanoprobing of semiconducting carbon nanotubes using an atomic force microscope. , 2004, Physical review letters.

[2]  M. Dresselhaus,et al.  Carbon nanotubes : synthesis, structure, properties, and applications , 2001 .

[3]  S. Ramo,et al.  Fields and Waves in Communication Electronics , 1966 .

[4]  Admittance and Nonlinear Transport in Quantum Wires, Point Contacts, and Resonant Tunneling Barriers , 1996, cond-mat/9610025.

[5]  Herbert Shea,et al.  Single- and multi-wall carbon nanotube field-effect transistors , 1998 .

[6]  P. Burke Luttinger liquid theory as a model of the gigahertz electrical properties of carbon nanotubes , 2002 .

[7]  M. Lundstrom,et al.  Ballistic carbon nanotube field-effect transistors , 2003, Nature.

[8]  Heiblum,et al.  Temporal correlation of electrons: Suppression of shot noise in a ballistic quantum point contact. , 1995, Physical review letters.

[9]  H. Grubin The physics of semiconductor devices , 1979, IEEE Journal of Quantum Electronics.

[10]  Paul L. McEuen,et al.  High Performance Electrolyte Gated Carbon Nanotube Transistors , 2002 .

[11]  Zhen Yu,et al.  Carbon nanotube growth for GHz devices , 2003, 2003 Third IEEE Conference on Nanotechnology, 2003. IEEE-NANO 2003..

[12]  Y. Yamashita,et al.  High f/sub T/ 50-nm-gate lattice-matched InAlAs/InGaAs HEMTs , 2000, Conference Proceedings. 2000 International Conference on Indium Phosphide and Related Materials (Cat. No.00CH37107).

[13]  Supriyo Datta,et al.  Metal–insulator–semiconductor electrostatics of carbon nanotubes , 2002 .

[14]  P. McEuen,et al.  Single-walled carbon nanotube electronics , 2002 .

[15]  Richard Martel,et al.  Vertical scaling of carbon nanotube field-effect transistors using top gate electrodes , 2002 .

[16]  Mark S. Lundstrom,et al.  High-κ dielectrics for advanced carbon-nanotube transistors and logic gates , 2002 .

[17]  R Martel,et al.  Carbon nanotubes as schottky barrier transistors. , 2002, Physical review letters.

[18]  Zhen Yu,et al.  Carbon nanotube transistor operation at 2.6 Ghz , 2004 .

[19]  C. Caves Quantum limits on noise in linear amplifiers , 1982 .

[20]  P. J. Burke An RF circuit model for carbon nanotubes , 2003 .

[21]  S. Tans,et al.  Room-temperature transistor based on a single carbon nanotube , 1998, Nature.

[22]  S. Datta,et al.  Performance projections for ballistic carbon nanotube field-effect transistors , 2002 .

[23]  M. Fuhrer,et al.  Extraordinary Mobility in Semiconducting Carbon Nanotubes , 2004 .

[24]  L. Sohn,et al.  Mesoscopic electron transport , 1997 .