Semiconductor Composites: Strategies for Enhancing Charge Carrier Separation to Improve Photocatalytic Activity

The formation of semiconductor composites comprising multicomponent or multiphase heterojunctions is a very effective strategy to design highly active photocatalyst systems. This review summarizes the recent strategies to develop such composites, and highlights the most recent developments in the fi eld. After a general introduction into the different strategies to improve photocatalytic activity through formation of heterojunctions, the three different types of heterojunctions are introduced in detail, followed by a historical introduction to semiconductor heterojunction systems and a thorough literature overview. Special chapters describe the highly-investigated carbon nitride heterojunctions as well as very recent developments in terms of multiphase heterojunction formation, including the latest insights into the anatase-rutile system. When carefully designed, semiconductor composites comprising two or three different materials or phases very effectively facilitate charge separation and charge carrier transfer, substantially improving photocatalytic and photoelectrochemical effi ciency.

[1]  P. Liska,et al.  Picosecond Time Resolved Electron Injection from Excited Cresyl Violet Monomers and Cd3P2 Quantum Dots into TiO2 , 1991 .

[2]  Ji-yang Wang,et al.  Enhanced photocatalytic performances of CeO2/TiO2 nanobelt heterostructures. , 2013, Small.

[3]  N. Kotov,et al.  Coupled Composite CdS−CdSe and Core−Shell Types of (CdS)CdSe and (CdSe)CdS Nanoparticles , 1996 .

[4]  Horst Weller,et al.  Sensitization of highly porous, polycrystalline TiO2 electrodes by quantum sized CdS , 1990 .

[5]  T. Peng,et al.  Preparation of AgIn5S8/TiO2 Heterojunction Nanocomposite and Its Enhanced Photocatalytic H2 Production Property under Visible Light , 2013 .

[6]  K. Domen,et al.  H2 evolution caused by electron transfer between different semiconductors under visible light irradiation , 1988 .

[7]  S. Yoshikawa,et al.  Preparation and characterization of mesoporous TiO2–CeO2 nanopowders respond to visible wavelength , 2005 .

[8]  Yueping Fang,et al.  Preparation of novel Sb2O3/WO3 photocatalysts and their activities under visible light irradiation , 2013 .

[9]  N. Keller,et al.  Solar light-activated photocatalytic degradation of gas phase diethylsulfide on WO3-modified TiO2 nanotubes , 2013 .

[10]  G. Rohrer,et al.  Enhanced photochemical activity of α-Fe2O3 films supported on SrTiO3 substrates under visible light illumination. , 2012, Chemical communications.

[11]  Jingying Shi,et al.  Photocatalytic Water Oxidation on BiVO4 with the Electrocatalyst as an Oxidation Cocatalyst: Essential Relations between Electrocatalyst and Photocatalyst , 2012 .

[12]  Y. Hsu,et al.  Interfacial charge carrier dynamics of type-II semiconductor nanoheterostructures , 2013 .

[13]  M. Ferroni,et al.  Tailoring the pore size and architecture of CeO2/TiO2 core/shell inverse opals by atomic layer deposition. , 2009, Small.

[14]  Can Li,et al.  Roles of cocatalysts in photocatalysis and photoelectrocatalysis. , 2013, Accounts of chemical research.

[15]  Chunzhong Li,et al.  Magnetic composite microspheres with exposed {001} faceted TiO2 shells: a highly active and selective visible-light photocatalyst , 2012 .

[16]  K. Domen,et al.  Direct deposition of nanoparticulate rhodium–chromium mixed-oxides on a semiconductor powder by band-gap irradiation , 2008 .

[17]  R. Brydson,et al.  Enhanced Photocatalytic Hydrogen Generation Using Polymorphic Macroporous TaON , 2012, Advanced materials.

[18]  Xiaobo Chen,et al.  Semiconductor-based photocatalytic hydrogen generation. , 2010, Chemical reviews.

[19]  Liping Li,et al.  Facile synthesis of composite g-C3N4/WO3: a nontoxic photocatalyst with excellent catalytic activity under visible light , 2013 .

[20]  Miyoko O. Watanabe,et al.  Band discontinuity for GaAs/AlGaAs heterojunction determined by C‐V profiling technique , 1985 .

[21]  Jiaguo Yu,et al.  Synthesis and Enhanced Visible-Light Photoelectrocatalytic Activity of p−n Junction BiOI/TiO2 Nanotube Arrays , 2011 .

[22]  Takayuki Hirai,et al.  Preparation and Photocatalytic Properties of Composite CdS Nanoparticles–Titanium Dioxide Particles , 2001 .

[23]  Yabo Wang,et al.  Design of a novel Cu₂O/TiO₂/carbon aerogel electrode and its efficient electrosorption-assisted visible light photocatalytic degradation of 2,4,6-trichlorophenol. , 2012, ACS applied materials & interfaces.

[24]  A. Walsh,et al.  Band alignment of rutile and anatase TiO₂. , 2013, Nature materials.

[25]  K. Domen,et al.  Fabrication of CaFe2O4/TaON heterojunction photoanode for photoelectrochemical water oxidation. , 2013, Journal of the American Chemical Society.

[26]  Guodong Li,et al.  Macroporous V2O5−BiVO4 Composites: Effect of Heterojunction on the Behavior of Photogenerated Charges , 2011 .

[27]  J. Bernardi,et al.  Functional Interfaces in Pure and Blended Oxide Nanoparticle Networks: Recombination versus Separation of Photogenerated Charges , 2009 .

[28]  Jiaqiang Wang,et al.  Significantly enhanced photocatalytic hydrogen evolution under visible light over CdS embedded on metal-organic frameworks. , 2013, Chemical communications.

[29]  P. Kamat Graphene-Based Nanoassemblies for Energy Conversion , 2011 .

[30]  Jun He,et al.  Enhancement of photocatalytic activity of Bi2WO6 hybridized with graphite-like C3N4 , 2012 .

[31]  H. Bai,et al.  Optimization and an insightful properties—Activity study of electrospun TiO2/CuO composite nanofibers for efficient photocatalytic H2 generation , 2013 .

[32]  T. Peng,et al.  Synthesis of floriated In2S3 decorated with TiO2 nanoparticles for efficient photocatalytic hydrogen production under visible light , 2011 .

[33]  J. S. Lee,et al.  Porous ZnO-ZnSe nanocomposites for visible light photocatalysis. , 2012, Nanoscale.

[34]  Yichun Liu,et al.  Enhancement of the visible-light photocatalytic activity of In2O3-TiO2 nanofiber heteroarchitectures. , 2012, ACS applied materials & interfaces.

[35]  H. Kim,et al.  Photocatalytic nanodiodes for visible-light photocatalysis. , 2005, Angewandte Chemie.

[36]  Tarek A. Kandiel,et al.  Tailored Titanium Dioxide Nanomaterials: Anatase Nanoparticles and Brookite Nanorods as Highly Active Photocatalysts , 2010 .

[37]  W. Zhou,et al.  Controlled synthesis of thorny anatase TiO2 tubes for construction of Ag–AgBr/TiO2 composites as highly efficient simulated solar-light photocatalyst , 2012 .

[38]  X. Cheng,et al.  Enhanced visible-light photocatalytic activity of g-C3N4–ZnWO4 by fabricating a heterojunction: investigation based on experimental and theoretical studies , 2012 .

[39]  Hui‐Ming Cheng,et al.  Visible-light-active elemental photocatalysts. , 2013, Chemphyschem : a European journal of chemical physics and physical chemistry.

[40]  Pingyun Feng,et al.  A three-dimensional branched cobalt-doped α-Fe2O3 nanorod/MgFe2O4 heterojunction array as a flexible photoanode for efficient photoelectrochemical water oxidation. , 2013, Angewandte Chemie.

[41]  Seung-Bin Park,et al.  Organic-inorganic composite of g-C3N4–SrTiO3:Rh photocatalyst for improved H2 evolution under visible light irradiation , 2012 .

[42]  Satyabadi Martha,et al.  Gd2Ti2O7/In2O3: Efficient Visible‐Light‐Driven Heterojunction‐Based Composite Photocatalysts for Hydrogen Production , 2013 .

[43]  S. Ramakrishna,et al.  Controlled synthesis and photoelectric application of ZnIn2S4 nanosheet/TiO2 nanoparticle composite films , 2011 .

[44]  Horst Weller,et al.  Quantum-Sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 Particles as Sensitizers for Various Nanoporous Wide-Bandgap Semiconductors , 1994 .

[45]  Xiaoping Wang,et al.  Highly stable heterostructured Ag–AgBr/TiO2 composite : a bifunctional visible-light active photocatalyst for destruction of ibuprofen and bacteria , 2012 .

[46]  F. Riboni,et al.  WO3–TiO2 vs. TiO2 photocatalysts: effect of the W precursor and amount on the photocatalytic activity of mixed oxides , 2013 .

[47]  Wei‐De Zhang,et al.  Facile preparation of heterostructured Bi2O3/Bi2MoO6 hollow microspheres with enhanced visible-light-driven photocatalytic and antimicrobial activity , 2013 .

[48]  J. Liebig Uber einige Stickstoff ‐ Verbindungen , 1834 .

[49]  Louis E. Brus,et al.  Nucleation and Growth of CdSe on ZnS Quantum Crystallite Seeds and Vice Versa, in Inverse Micelle Media , 1990 .

[50]  Lianzhou Wang,et al.  ZnO–CdS@Cd Heterostructure for Effective Photocatalytic Hydrogen Generation , 2012 .

[51]  Sean C. Smith,et al.  Band-to-Band Visible-Light Photon Excitation and Photoactivity Induced by Homogeneous Nitrogen Doping in Layered Titanates , 2009 .

[52]  Can Li,et al.  Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as Cocatalyst under visible light irradiation. , 2008, Journal of the American Chemical Society.

[53]  Hyun Woo Lee,et al.  Preparation of Transparent Particulate MoO 3 /TiO 2 and WO 3 /TiO 2 Films and Their Photocatalytic Properties , 2001 .

[54]  Michael K. Seery,et al.  Highly Visible Light Active TiO2-xNx Heterojunction Photocatalysts , 2010 .

[55]  Tae Woo Kim,et al.  Mesoporous layer-by-layer ordered nanohybrids of layered double hydroxide and layered metal oxide: highly active visible light photocatalysts with improved chemical stability. , 2011, Journal of the American Chemical Society.

[56]  Jacek K. Stolarczyk,et al.  Photocatalytic reduction of CO2 on TiO2 and other semiconductors. , 2013, Angewandte Chemie.

[57]  Yueping Fang,et al.  A carbon nitride/TiO2 nanotube array heterojunction visible-light photocatalyst: synthesis, characterization, and photoelectrochemical properties , 2012 .

[58]  S. Yin,et al.  Efficient persistent photocatalytic decomposition of nitrogen monoxide over a fluorescence-assisted CaAl2O4:(Eu, Nd)/(Ta, N)-codoped TiO2/Fe2O3 , 2013 .

[59]  Xueqin Liu,et al.  Synthesis of one-dimensional TiO2/V2O5 branched heterostructures and their visible light photocatalytic activity towards Rhodamine B , 2011, Nanotechnology.

[60]  Bifen Gao,et al.  Remarkable promotion of photocatalytic hydrogen evolution from water on TiO2-pillared titanoniobate , 2013 .

[61]  Xiuli Wang,et al.  Dual Cocatalysts Loaded Type I CdS/ZnS Core/Shell Nanocrystals as Effective and Stable Photocatalysts for H2 Evolution , 2013 .

[62]  Y. Sasson,et al.  A novel class of heterojunction photocatalysts with highly enhanced visible light photocatalytic performances: yBiO(ClxBr1−x)–(1 − y) bismuth oxide hydrate , 2012 .

[63]  A. Ismail,et al.  Photodeposition of precious metals onto mesoporous TiO2 nanocrystals with enhanced their photocatalytic activity for methanol oxidation , 2013 .

[64]  M. Lübke,et al.  A particle size effect in the sensitization of TiO2 electrodes by a CdS deposit , 1986 .

[65]  Changcun Han,et al.  Novel visible light-induced g-C3N4/Bi2WO6 composite photocatalysts for efficient degradation of methyl orange , 2011 .

[66]  E. Uchaker,et al.  Titanium alkoxide induced BiOBr–Bi2WO6 mesoporous nanosheet composites with much enhanced photocatalytic activity , 2013 .

[67]  Z. Yin,et al.  Synthesis of few-layer MoS2 nanosheet-coated TiO2 nanobelt heterostructures for enhanced photocatalytic activities. , 2013, Small.

[68]  T. Furtak,et al.  Efficient photoelectrochemical water oxidation over cobalt-phosphate (Co-Pi) catalyst modified BiVO4/1D-WO3 heterojunction electrodes. , 2013, Physical chemistry chemical physics : PCCP.

[69]  S. Woo,et al.  Enhanced hydrogen generation from methanol aqueous solutions over Pt/MoO3/TiO2 under ultraviolet light , 2013 .

[70]  K. Parida,et al.  Fabrication of novel p-BiOI/n-ZnTiO3 heterojunction for degradation of rhodamine 6G under visible light irradiation. , 2013, Inorganic chemistry.

[71]  R. Stroud,et al.  Plasmonic enhancement of visible-light water splitting with Au-TiO2 composite aerogels. , 2013, Nanoscale.

[72]  M. Swaminathan,et al.  Facile Fabrication of Heterostructured Bi2O3–ZnO Photocatalyst and Its Enhanced Photocatalytic Activity , 2012 .

[73]  Tarek A. Kandiel,et al.  Direct Synthesis of Photocatalytically Active Rutile TiO2 Nanorods Partly Decorated with Anatase Nanoparticles , 2010 .

[74]  Qingchi Xu,et al.  Understanding bactericidal performance on ambient light activated TiO2-InVO4 nanostructured films. , 2011, Nanoscale.

[75]  Pierre Pichat,et al.  TiO2-In2O3 photocatalysts: preparation, characterisations and activity for 2-chlorophenol degradation in water , 2004 .

[76]  Huijun Zhao,et al.  Photocatalytic degradation characteristics of different organic compounds at TiO2 nanoporous film electrodes with mixed anatase/ rutile phases. , 2007, Environmental science & technology.

[77]  Stephen B. Cronin,et al.  A Review of Surface Plasmon Resonance‐Enhanced Photocatalysis , 2013 .

[78]  S. Jiao,et al.  3D Bi12TiO20/TiO2 hierarchical heterostructure: synthesis and enhanced visible-light photocatalytic activities. , 2011, Journal of hazardous materials.

[79]  A. Yamazaki,et al.  Charge separation at the rutile/anatase interface: a dominant factor of photocatalytic activity , 2004 .

[80]  Can Li,et al.  Photocatalytic overall water splitting promoted by an α-β phase junction on Ga2O3. , 2012, Angewandte Chemie.

[81]  Juan Zhou,et al.  Hierarchical flake-like Bi2MoO6/TiO2 bilayer films for visible-light-induced self-cleaning applications , 2013 .

[82]  Zhong Chen,et al.  Enhanced Photocatalytic Hydrogen Production with Synergistic Two-Phase Anatase/Brookite TiO2 Nanostructures , 2013 .

[83]  G. Lu,et al.  Crystal facet engineering of semiconductor photocatalysts: motivations, advances and unique properties. , 2011, Chemical communications.

[84]  Ruizhen Guo,et al.  Preparation of Ag/AgCl/BiMg{sub 2}VO{sub 6} composite and its visible-light photocatalytic activity , 2013 .

[85]  Changcun Han,et al.  Synthesis and characterization of composite visible light active photocatalysts MoS2–g-C3N4 with enhanced hydrogen evolution activity , 2013 .

[86]  T. Mori,et al.  Photoluminescence study of mixtures of anatase and rutile TiO2 nanoparticles: Influence of charge transfer between the nanoparticles on their photoluminescence excitation bands , 2005 .

[87]  Daniel G. Nocera,et al.  In Situ Formation of an Oxygen-Evolving Catalyst in Neutral Water Containing Phosphate and Co2+ , 2008, Science.

[88]  K. Parida,et al.  Visible-light driven Gd2Ti2O7/GdCrO3 composite for hydrogen evolution. , 2011, Dalton transactions.

[89]  T. Schedel-Niedrig,et al.  Solar hydrogen evolution using metal-free photocatalytic polymeric carbon nitride/CuInS2 composites as photocathodes , 2013 .

[90]  Ling Zhang,et al.  Design and controllable synthesis of α-/γ-Bi2O3 homojunction with synergetic effect on photocatalytic activity , 2012 .

[91]  Cheng Wang,et al.  Metal‐Organic Framework Templated Synthesis of Fe2O3/TiO2 Nanocomposite for Hydrogen Production , 2012, Advanced materials.

[92]  Peng Wang,et al.  Highly stable copper oxide composite as an effective photocathode for water splitting via a facile electrochemical synthesis strategy , 2012 .

[93]  P. Kamat,et al.  Photophysics and photochemistry of quantized ZnO colloids , 1992 .

[94]  S. Nazir,et al.  High charge carrier density at the NaTaO3/SrTiO3 hetero-interface , 2011 .

[95]  Yu Hou,et al.  Fabrication of regular ZnO/TiO2 heterojunctions with enhanced photocatalytic properties. , 2013, Chemistry.

[96]  M. Matsumura,et al.  Synergism between rutile and anatase TiO2 particles in photocatalytic oxidation of naphthalene , 2003 .

[97]  Bai Xu,et al.  Fe-doped and ZnO-pillared titanates as visible-light-driven photocatalysts. , 2011, Journal of colloid and interface science.

[98]  G. Eda,et al.  Photoelectrochemical properties of chemically exfoliated MoS2 , 2013 .

[99]  G. Colón,et al.  Sunlight highly photoactive Bi2WO6-TiO2 heterostructures for rhodamine B degradation. , 2010, Chemical communications.

[100]  M. Antonietti,et al.  A metal-free polymeric photocatalyst for hydrogen production from water under visible light. , 2009, Nature materials.

[101]  S. Luo,et al.  High efficient photocatalytic degradation of p-nitrophenol on a unique Cu2O/TiO2 p-n heterojunction network catalyst. , 2010, Environmental science & technology.

[102]  R. Amal,et al.  Transforming Anodized WO3 Films into Visible-Light-Active Bi2WO6 Photoelectrodes by Hydrothermal Treatment. , 2012, The journal of physical chemistry letters.

[103]  Satishchandra Ogale,et al.  Near-field plasmonic functionalization of light harvesting oxide-oxide heterojunctions for efficient solar photoelectrochemical water splitting: the AuNP/ZnFe₂O₄/ZnO system. , 2013, Small.

[104]  Yichun Liu,et al.  One-dimensional Bi2MoO6/TiO2 hierarchical heterostructures with enhanced photocatalytic activity , 2012 .

[105]  Xifeng Lu,et al.  Preparation and photocatalytic properties of g-C3N4/TiO2 hybrid composite , 2010 .

[106]  A. Henglein,et al.  Photochemistry of colloidal semiconductors 24. Interparticle electron transfer in Cd3P2—TiO2 and Cd3P2—ZnO sandwich structures , 1987 .

[107]  Yao Zheng,et al.  Graphitic carbon nitride materials: controllable synthesis and applications in fuel cells and photocatalysis , 2012 .

[108]  M. Trari,et al.  Visible light degradation of Orange II using xCuyOz/TiO2 heterojunctions. , 2009, Journal of hazardous materials.

[109]  S. Jiao,et al.  In situ synthesis of α–β phase heterojunction on Bi2O3 nanowires with exceptional visible-light photocatalytic performance , 2013 .

[110]  Jiaguo Yu,et al.  Effect of calcination temperature on morphology and photoelectrochemical properties of anodized titanium dioxide nanotube arrays , 2010 .

[111]  Prashant V. Kamat,et al.  Modification of electrode surface with semiconductor colloids and its sensitization with chlorophyll a , 1992 .

[112]  O. Diwald,et al.  Particle Networks from Powder Mixtures: Generation of TiO2–SnO2 Heterojunctions via Surface Charge-Induced Heteroaggregation , 2012, The journal of physical chemistry. C, Nanomaterials and interfaces.

[113]  Jingkun Xu,et al.  Enhancement of methanol electrocatalytic oxidation on platinized WO3–TiO2 composite electrode under visible light irradiation , 2013 .

[114]  Guodong Liu,et al.  Micro-nano-structured Fe₂O₃:Ti/ZnFe₂O₄ heterojunction films for water oxidation. , 2012, ACS applied materials & interfaces.

[115]  Wonyong Choi,et al.  The Role of Metal Ion Dopants in Quantum-Sized TiO2: Correlation between Photoreactivity and Charge Carrier Recombination Dynamics , 1994 .

[116]  Peng Wang,et al.  Plasmonic photocatalysts: harvesting visible light with noble metal nanoparticles. , 2012, Physical chemistry chemical physics : PCCP.

[117]  P. Schmuki,et al.  Nb doped TiO2 nanotubes for enhanced photoelectrochemical water-splitting. , 2011, Nanoscale.

[118]  Jinlong Zhang,et al.  Preparation of controllable crystalline titania and study on the photocatalytic properties. , 2005, The journal of physical chemistry. B.

[119]  Hyunwoong Park,et al.  Strategic Modification of BiVO4 for Improving Photoelectrochemical Water Oxidation Performance , 2013 .

[120]  Jinhua Ye,et al.  Photocatalytic Water Splitting with the Cr-Doped Ba2In2O5/In2O3 Composite Oxide Semiconductors , 2005 .

[121]  Jiaguo Yu,et al.  Enhanced visible-light photocatalytic activity of Bi2WO6 nanoparticles by Ag2O cocatalyst , 2012 .

[122]  L. Baia,et al.  The photocatalytic activity of TiO2/WO3/noble metal (Au or Pt) nanoarchitectures obtained by selective photodeposition , 2013 .

[123]  Jiaguo Yu,et al.  Effects of calcination temperature on the photocatalytic activity and photo-induced super-hydrophilicity of mesoporous TiO2 thin films , 2002 .

[124]  Sher Bahadur Rawal,et al.  Visible-Light Photocatalytic Properties of W18O49/TiO2 and WO3/TiO2 Heterocomposites , 2012, Catalysis Letters.

[125]  J. Kiwi,et al.  Effect of rutile phase on the photocatalytic properties of nanocrystalline titania during the degradation of p-coumaric acid , 1998 .

[126]  R. Asahi,et al.  Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides , 2001, Science.

[127]  Junying Zhang,et al.  TiO2 film/Cu2O microgrid heterojunction with photocatalytic activity under solar light irradiation. , 2009, ACS applied materials & interfaces.

[128]  John A Turner,et al.  BiVO(4)/CuWO(4) heterojunction photoanodes for efficient solar driven water oxidation. , 2013, Physical chemistry chemical physics : PCCP.

[129]  D. P. Das,et al.  Facile synthesis of visible light responsive V2O5/N,S–TiO2 composite photocatalyst: enhanced hydrogen production and phenol degradation , 2012 .

[130]  Wenguang Tu,et al.  Versatile Graphene‐Promoting Photocatalytic Performance of Semiconductors: Basic Principles, Synthesis, Solar Energy Conversion, and Environmental Applications , 2013 .

[131]  Jing Tang,et al.  Carbon spheres supported visible-light-driven CuO-BiVO4 heterojunction: Preparation, characterization, and photocatalytic properties , 2012 .

[132]  T. Akita,et al.  Au nanoparticle electrocatalysis in a photoelectrochemical solar cell using CdS quantum dot-sensitized TiO2 photoelectrodes. , 2009, Chemical communications.

[133]  P. Kamat,et al.  Interparticle electron transfer between size-quantized CdS and TiO2 semiconductor nanoclustersDedicated to Professor Frank Wilkinson on the occasion of his retirement. , 2002 .

[134]  Xinyong Li,et al.  Fabrication of Ag/Ag3PO4/TiO2 heterostructure photoelectrodes for efficient decomposition of 2-chlorophenol under visible light irradiation , 2013 .

[135]  Yunfeng Lu,et al.  WO3 nanocrystals with tunable percentage of (0 0 1)-facet exposure , 2012 .

[136]  Shao-jie Wang,et al.  A novel synthetic route for magnetically retrievable Bi2WO6 hierarchical microspheres with enhanced visible photocatalytic performance , 2013 .

[137]  Mei Wang,et al.  Recent progress in electrochemical hydrogen production with earth-abundant metal complexes as catalysts , 2012 .

[138]  Alexander J. Cowan,et al.  Activation energies for the rate-limiting step in water photooxidation by nanostructured α-Fe2O3 and TiO2. , 2011, Journal of the American Chemical Society.

[139]  Jin-Ri Choi,et al.  Photocatalytic production of hydrogen on Ni/NiO/KNbO3/CdS nanocomposites using visible light , 2008 .

[140]  J. Jang,et al.  Fabrication of CaFe2O4/MgFe2O4 bulk heterojunction for enhanced visible light photocatalysis. , 2009, Chemical communications.

[141]  Prashant V. Kamat,et al.  Quantum Dot Solar Cells. Semiconductor Nanocrystals as Light Harvesters , 2008 .

[142]  A. Baruah,et al.  Synthesis of a novel and stable g-C3N4–Ag3PO4 hybrid nanocomposite photocatalyst and study of the photocatalytic activity under visible light irradiation , 2013 .

[143]  Markus Antonietti,et al.  mpg-C(3)N(4)-Catalyzed selective oxidation of alcohols using O(2) and visible light. , 2010, Journal of the American Chemical Society.

[144]  Weiming Hua,et al.  Investigation on the synergetic effect between anatase and rutile nanoparticles in gas-phase photocatalytic oxidations , 2004 .

[145]  P. Dhanasekaran,et al.  Visible-Light-Induced Photosplitting of Water over γ′-Fe4N and γ′-Fe4N/α-Fe2O3 Nanocatalysts , 2012 .

[146]  Ranjith G. Nair,et al.  High UV/visible light activity of mixed phase titania: A generic mechanism , 2011 .

[147]  Can Li,et al.  A hybrid photocatalytic system comprising ZnS as light harvester and an [Fe(2)S(2)] hydrogenase mimic as hydrogen evolution catalyst. , 2012, ChemSusChem.

[148]  David G. Evans,et al.  Enhancement of visible light photocatalysis by grafting ZnO nanoplatelets with exposed (0001) facets onto a hierarchical substrate. , 2011, Chemical Communications.

[149]  Michael Grätzel,et al.  WO3-Fe2O3 Photoanodes for Water Splitting: A Host Scaffold, Guest Absorber Approach , 2009 .

[150]  Kyoung-Shin Choi,et al.  Efficient and stable photo-oxidation of water by a bismuth vanadate photoanode coupled with an iron oxyhydroxide oxygen evolution catalyst. , 2012, Journal of the American Chemical Society.

[151]  Jungkweon Choi,et al.  Enhanced photocatalytic activity in composites of TiO2 nanotubes and CdS nanoparticles. , 2006, Chemical communications.

[152]  Yajun Wang,et al.  Dramatic Activity of C3N4/BiPO4 Photocatalyst with Core/Shell Structure Formed by Self‐Assembly , 2012 .

[153]  B. Smarsly,et al.  Mesoporous sandwiches: towards mesoporous multilayer films of crystalline metal oxides. , 2009, Physical chemistry chemical physics : PCCP.

[154]  Danzhen Li,et al.  InVO4-sensitized TiO2 photocatalysts for efficient air purification with visible light , 2008 .

[155]  Wei‐De Zhang,et al.  Anion exchange strategy for construction of sesame-biscuit-like Bi2O2CO3/Bi2MoO6 nanocomposites with enhanced photocatalytic activity , 2013 .

[156]  Prashant V. Kamat,et al.  Capped Semiconductor Colloids. Synthesis and Photoelectrochemical Behavior of TiO2 Capped SnO2 Nanocrystallites , 1995 .

[157]  Wilson A. Smith,et al.  Visible Light Water Splitting via Oxidized TiN Thin Films , 2012 .

[158]  Jiaguo Yu,et al.  Hydrothermal Preparation and Photocatalytic Activity of Hierarchically Sponge-like Macro-/Mesoporous Titania , 2007 .

[159]  M. Gong,et al.  Synthesis and Characterization of TiO2/YFeO3 and Its Photocatalytic Oxidation of Gaseous Benzene , 2008 .

[160]  D. Kang,et al.  Facile synthesis of core–shell SnO2/V2O5 nanowires and their efficient photocatalytic property , 2010 .

[161]  G. K. Pradhan,et al.  Synthesis of multifunctional nanostructured zinc-iron mixed oxide photocatalyst by a simple solution-combustion technique. , 2012, ACS applied materials & interfaces.

[162]  X. Lin,et al.  Photocatalytic activity of Nb2O5/SrNb2O6 heterojunction on the degradation of methyl orange , 2008 .

[163]  N. Dimitrijević,et al.  Synthesizing mixed-phase TiO2 nanocomposites using a hydrothermal method for photo-oxidation and photoreduction applications , 2008 .

[164]  Alexander G. Agrios,et al.  Probing reaction mechanisms in mixed phase TiO2 by EPR , 2006 .

[165]  G. Xu,et al.  Facile synthesis of uniform α-Fe2O3 crystals and their facet-dependent catalytic performance in the photo-Fenton reaction , 2013 .

[166]  Lizhi Zhang,et al.  ZnO/BiOI Heterostructures: Photoinduced Charge-Transfer Property and Enhanced Visible-Light Photocatalytic Activity , 2011 .

[167]  J. Choy,et al.  Chemical Bonding Character and Physicochemical Properties of Mesoporous Zinc Oxide-Layered Titanate Nanocomposites , 2007 .

[168]  M. Miyauchi,et al.  Chemically Stable WO3 Based Thin-Film for Visible-Light Induced Oxidation and Superhydrophilicity , 2012 .

[169]  R. Marschall,et al.  Correction to: Enhanced photocatalytic hydrogen generation from barium tantalate composites , 2013, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[170]  M. Grätzel,et al.  LaTiO2N/In2O3 photoanodes with improved performance for solar water splitting. , 2012, Chemical communications.

[171]  T. Andreu,et al.  Enhanced photoelectrochemical activity of an excitonic staircase in CdS@TiO2 and CdS@anatase@rutile TiO2 heterostructures , 2012 .

[172]  Fenggong Wang,et al.  Rational Band Gap Engineering of WO3 Photocatalyst for Visible light Water Splitting , 2012 .

[173]  Yuxin Yang,et al.  Preparation and enhanced visible-light photocatalytic activity of graphitic carbon nitride/bismuth niobate heterojunctions. , 2013, Journal of hazardous materials.

[174]  Hyunwoong Park,et al.  Effects of the preparation method of the ternary CdS/TiO2/Pt hybrid photocatalysts on visible light-induced hydrogen production , 2008 .

[175]  Z. Li,et al.  A templated method to Bi2WO6 hollow microspheres and their conversion to double-shell Bi2O3/Bi2WO6 hollow microspheres with improved photocatalytic performance. , 2012, Inorganic chemistry.

[176]  Z. Xiong,et al.  Nitrogen-doped titanate-anatase core-shell nanobelts with exposed {101} anatase facets and enhanced visible light photocatalytic activity. , 2012, Journal of the American Chemical Society.

[177]  Kazuhiko Maeda,et al.  Photocatalytic water splitting using semiconductor particles: History and recent developments , 2011 .

[178]  T. Xie,et al.  Photoinduced charge transfer properties and photocatalytic activity in Bi2O3/BaTiO3 composite photocatalyst. , 2012, ACS applied materials & interfaces.

[179]  Anders Palmqvist,et al.  How the Anatase-to-Rutile Ratio Influences the Photoreactivity of TiO2 , 2011 .

[180]  Sean C. Smith,et al.  Preparation of new sulfur-doped and sulfur/nitrogen co-doped CsTaWO6 photocatalysts for hydrogen production from water under visible light , 2011 .

[181]  S. Obregón,et al.  Erbium doped TiO2–Bi2WO6 heterostructure with improved photocatalytic activity under sun-like irradiation , 2013 .

[182]  Danzhen Li,et al.  Application of long wavelength visible light (λ > 650 nm) in photocatalysis with a p-CuO–n-In2O3 quantum dot heterojunction photocatalyst , 2013 .

[183]  Wei‐De Zhang,et al.  MoS2/CdS Heterojunction with High Photoelectrochemical Activity for H2 Evolution under Visible Light: The Role of MoS2 , 2013 .

[184]  Chao Ma,et al.  Synthesis and characterization of high efficiency and stable Ag3PO4/TiO2 visible light photocatalyst for the degradation of methylene blue and rhodamine B solutions , 2012 .

[185]  M. Fontecave,et al.  Splitting water with cobalt. , 2011, Angewandte Chemie.

[186]  Jun Zhang,et al.  Tailored TiO2-SrTiO3 heterostructure nanotube arrays for improved photoelectrochemical performance. , 2010, ACS nano.

[187]  Jing Cao,et al.  Thermodecomposition synthesis of WO3/H2WO4 heterostructures with enhanced visible light photocatalytic properties , 2012 .

[188]  Y. Konishi,et al.  A patterned TiO(2)(anatase)/TiO(2)(rutile) bilayer-type photocatalyst: effect of the anatase/rutile junction on the photocatalytic activity. , 2002, Angewandte Chemie.

[189]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[190]  Jin Zou,et al.  Anatase TiO2 single crystals with a large percentage of reactive facets , 2008, Nature.

[191]  Kyoung-Shin Choi,et al.  Synthesis and Photoelectrochemical Properties of Fe2O3/ZnFe2O4 Composite Photoanodes for Use in Solar Water Oxidation , 2011 .

[192]  N. Wang,et al.  Visible light driven overall water splitting using cocatalyst/BiVO4 photoanode with minimized bias. , 2013, Physical chemistry chemical physics : PCCP.

[193]  Can Li,et al.  Importance of the relationship between surface phases and photocatalytic activity of TiO2. , 2008, Angewandte Chemie.

[194]  C. Mullins,et al.  Improvement of solar energy conversion with Nb-incorporated TiO2 hierarchical microspheres. , 2013, Chemphyschem : a European journal of chemical physics and physical chemistry.

[195]  Binbin Chang,et al.  BiOBr–carbon nitride heterojunctions: synthesis, enhanced activity and photocatalytic mechanism , 2012 .

[196]  Ashok Kumar Chakraborty,et al.  Heterojunctioned BiOCl/Bi2O3, a new visible light photocatalyst , 2009 .

[197]  Junfa Zhu,et al.  Facile fabrication of magnetically separable graphitic carbon nitride photocatalysts with enhanced photocatalytic activity under visible light , 2013 .

[198]  Xinchen Wang,et al.  A facile band alignment of polymeric carbon nitride semiconductors to construct isotype heterojunctions. , 2012, Angewandte Chemie.

[199]  Ziyauddin Khan,et al.  Hierarchically Grown Urchinlike CdS@ZnO and CdS@Al2O3 Heteroarrays for Efficient Visible-Light-Driven Photocatalytic Hydrogen Generation , 2012 .

[200]  Prashant V. Kamat,et al.  Charge-transfer processes in coupled semiconductor systems. Photochemistry and photoelectrochemistry of the colloidal cadmium sulfide-zinc oxide system , 1992 .

[201]  C. Lai,et al.  Preparation of hybrid WO3-TiO2 nanotube photoelectrodes using anodization and wet impregnation: Improved water-splitting hydrogen generation performance , 2013 .

[202]  K. Warrier,et al.  Synergistic Effect in Photocatalysis As Observed for Mixed-Phase Nanocrystalline Titania Processed via Sol−Gel Solvent Mixing and Calcination , 2008 .

[203]  Aleksandra Radenovic,et al.  ZnO-Al2O3 and ZnO-TiO2 core-shell nanowire dye-sensitized solar cells. , 2006, The journal of physical chemistry. B.

[204]  Sean C. Smith,et al.  N‐Doped CsTaWO6 as a New Photocatalyst for Hydrogen Production from Water Splitting Under Solar Irradiation , 2011 .

[205]  Rui Shi,et al.  Enhancement of photocurrent and photocatalytic activity of ZnO hybridized with graphite-like C3N4 , 2011 .

[206]  Thomas F. Jaramillo,et al.  Accelerating materials development for photoelectrochemical hydrogen production: Standards for methods, definitions, and reporting protocols , 2010 .

[207]  Yichun Liu,et al.  Bi4Ti3O12 nanosheets/TiO2 submicron fibers heterostructures: in situ fabrication and high visible light photocatalytic activity , 2011 .

[208]  J. Moon,et al.  Enhanced photovoltaic properties of Nb₂O₅-coated TiO₂ 3D ordered porous electrodes in dye-sensitized solar cells. , 2012, ACS applied materials & interfaces.

[209]  Masaru Kuno,et al.  Photocatalytic Hydrogen Generation Efficiencies in One-Dimensional CdSe Heterostructures. , 2012, The journal of physical chemistry letters.

[210]  Jingying Shi,et al.  Composite Sr2TiO4/SrTiO3(La,Cr) heterojunction based photocatalyst for hydrogen production under visible light irradiation , 2013 .

[211]  T. Peng,et al.  Facets coupling of BiOBr-g-C3N4 composite photocatalyst for enhanced visible-light-driven photocatalytic activity , 2013 .

[212]  M. Wark,et al.  Improved Photocatalytic Hydrogen Production by Structure Optimized Nonstoichiometric Y2Ti2O7 , 2012 .

[213]  W. Bu,et al.  TiO2 nanoparticles incorporated with CuInS2 clusters: preparation and photocatalytic activity for degradation of 4-nitrophenol , 2009 .

[214]  T. Akita,et al.  Low-temperature synthesis of anatase-brookite composite nanocrystals: the junction effect on photocatalytic activity. , 2005, Journal of colloid and interface science.

[215]  P. Edwards,et al.  Unusual reactivity of visible-light-responsive AgBr–BiOBr heterojunction photocatalysts , 2012 .

[216]  T. Xie,et al.  Low-Temperature Synthesis and High Visible-Light-Induced Photocatalytic Activity of BiOI/TiO2 Heterostructures , 2009 .

[217]  Zhigang Chen,et al.  Enhanced photocatalytic hydrogen evolution by prolonging the lifetime of carriers in ZnO/CdS heterostructures. , 2009, Chemical communications.

[218]  Toshiki Tsubota,et al.  Development of highly efficient sulfur-doped TiO2 photocatalysts hybridized with graphitic carbon nitride , 2013 .

[219]  A. Varma,et al.  An in situ diffuse reflectance FTIR investigation of photocatalytic degradation of 4-chlorophenol on a TiO2 powder surface , 1993 .

[220]  T. Peng,et al.  Graphitic carbon nitride (g-C3N4)-Pt-TiO2 nanocomposite as an efficient photocatalyst for hydrogen production under visible light irradiation. , 2012, Physical chemistry chemical physics : PCCP.

[221]  A. Henglein,et al.  Photochemistry of semiconductor colloids. 22. Electron ejection from illuminated cadmium sulfide into attached titanium and zinc oxide particles , 1987 .

[222]  P. Kamat,et al.  Nanostructured semiconductor films for photocatalysis. Photoelectrochemical behavior of SnO2/TiO2 composite systems and its role in photocatalytic degradation of a textile azo dye , 1996 .

[223]  Huaidong Jiang,et al.  UV-visible-light-activated photocatalysts based on Bi2O3/Bi4Ti3O12/TiO2 double-heterostructured TiO2 nanobelts , 2012 .

[224]  Craig A. Grimes,et al.  High-rate solar photocatalytic conversion of CO2 and water vapor to hydrocarbon fuels. , 2009, Nano letters.

[225]  J. Jang,et al.  Heterojunction photocatalyst TiO2/AgGaS2 for hydrogen production from water under visible light , 2009 .

[226]  Hyunwoong Park,et al.  Photoelectrochemical and Photocatalytic Behaviors of Hematite-Decorated Titania Nanotube Arrays: Energy Level Mismatch versus Surface Specific Reactivity , 2011 .

[227]  Yueping Fang,et al.  Synthesis of porous Fe3O4/g-C3N4 nanospheres as highly efficient and recyclable photocatalysts , 2013 .

[228]  Lianjun Liu,et al.  Bicrystalline TiO2 with controllable anatase–brookite phase content for enhanced CO2 photoreduction to fuels , 2013 .

[229]  Sean C. Smith,et al.  Nitrogen doping in ion-exchangeable layered tantalate towards visible-light induced water oxidation. , 2011, Chemical communications.

[230]  Wenzhong Wang,et al.  Enhancement of visible-light photocatalysis by coupling with narrow-band-gap semiconductor: a case study on Bi2S3/Bi2WO6. , 2012, ACS applied materials & interfaces.

[231]  Tarek A. Kandiel,et al.  Brookite versus anatase TiO_2 photocatalysts: phase transformations and photocatalytic activities , 2013, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[232]  A. Kudo,et al.  Heterogeneous photocatalyst materials for water splitting. , 2009, Chemical Society reviews.

[233]  Jonathan Z. Bloh,et al.  Designing Optimal Metal-Doped Photocatalysts: Correlation between Photocatalytic Activity, Doping Ratio, and Particle Size , 2012 .

[234]  Ke Su,et al.  Efficient Visible Light-Driven Photocatalytic Degradation of Pentachlorophenol with Bi2O3/TiO2–xBx , 2012 .

[235]  Nick Serpone,et al.  Visible light induced generation of hydrogen from H2S in mixed semiconductor dispersions; improved efficiency through inter-particle electron transfer , 1984 .

[236]  T. Frauenheim,et al.  Band Lineup and Charge Carrier Separation in Mixed Rutile-Anatase Systems , 2011 .

[237]  S. Jiao,et al.  In situ chemical reduction of the Ta3N5 quantum dots coupled TaON hollow spheres heterojunction photocatalyst for water oxidation , 2012 .

[238]  M. Gracia-Pinilla,et al.  Synthesis by sol–gel of WO3/TiO2 for solar photocatalytic degradation of malathion pesticide , 2013 .

[239]  Ziyauddin Khan,et al.  Hierarchical 3D NiO–CdS heteroarchitecture for efficient visible light photocatalytic hydrogen generation , 2012 .

[240]  Alejandro Criado,et al.  Inside Cover: [16]Cloverphene: a Clover‐Shaped cata‐Condensed Nanographene with Sixteen Fused Benzene Rings (Angew. Chem. Int. Ed. 1/2012) , 2012 .

[241]  P. Liska,et al.  A swift dye uptake procedure for dye sensitized solar cells. , 2003, Chemical communications.

[242]  S. Linic,et al.  Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. , 2011, Nature materials.

[243]  Ladislav Kavan,et al.  ELECTROCHEMICAL AND PHOTOELECTROCHEMICAL INVESTIGATION OF SINGLE-CRYSTAL ANATASE , 1996 .

[244]  Xie Quan,et al.  TiO2 nanotube/Ag–AgBr three-component nanojunction for efficient photoconversion , 2011 .

[245]  Jinhua Ye,et al.  Band structure design and photocatalytic activity of In2O3/N–InNbO4 composite , 2009 .

[246]  Hexing Li,et al.  Self-Assembly of Active Bi2O3/TiO2 Visible Photocatalyst with Ordered Mesoporous Structure and Highly Crystallized Anatase , 2008 .

[247]  Hua Zhang,et al.  Graphene-based composites. , 2012, Chemical Society reviews.

[248]  P. Wardman,et al.  Reduction Potentials of One-Electron Couples Involving Free Radicals in Aqueous Solution , 1989 .

[249]  Yi-Ting Liao,et al.  Nonaqueous seeded growth of flower-like mixed-phase titania nanostructures for photocatalytic applications , 2010 .

[250]  Guoqiang Li,et al.  Photophysical and enhanced daylight photocatalytic properties of N-doped TiO2/g-C3N4 composites , 2011 .

[251]  J. Lu,et al.  Preparation and photocatalytic properties of AgI–SnO2 nano-composites , 2013 .

[252]  K. Dwight,et al.  Surface Acidity and Photocatalytic Activity of TiO2, WO3/TiO2, and MoO3/TiO2 Photocatalysts , 1994 .

[253]  Ying Dai,et al.  A controlled anion exchange strategy to synthesize Bi2S3 nanocrystals/BiOCl hybrid architectures with efficient visible light photoactivity. , 2012, Chemical communications.

[254]  P. Kamat,et al.  Photophysical and photochemical aspects of coupled semiconductors: charge-transfer processes in colloidal cadmium sulfide-titania and cadmium sulfide-silver(I) iodide systems , 1990 .

[255]  Horst Kisch,et al.  The nature of nitrogen-modified titanium dioxide photocatalysts active in visible light. , 2008, Angewandte Chemie.

[256]  Frank E. Osterloh,et al.  CdSe-MoS2: A Quantum Size-Confined Photocatalyst for Hydrogen Evolution from Water under Visible Light , 2010 .

[257]  Peng Wang,et al.  Highly Photocatalytic ZnO/In2O3 Heteronanostructures Synthesized by a Coprecipitation Method , 2009 .

[258]  S. Hotchandani,et al.  Photoelectrochemistry of Composite Semiconductor Thin Films. Photosensitization of SnO2/CdS Coupled Nanocrystallites with a Ruthenium Polypyridyl Complex , 1997 .

[259]  V. Rodríguez-González,et al.  Slurry photodegradation of 2,4-dichlorophenoxyacetic acid: A comparative study of impregnated and sol–gel In2O3–TiO2 mixed oxide catalysts , 2008 .

[260]  Z. Zou,et al.  Organic-inorganic composite photocatalyst of g-C(3)N(4) and TaON with improved visible light photocatalytic activities. , 2010, Dalton transactions.

[261]  J. Rabani Sandwich colloids of zinc oxide and zinc sulfide in aqueous solutions , 1989 .

[262]  V. Murugesan,et al.  Enhancement of photocatalytic activity by metal deposition: characterisation and photonic efficiency of Pt, Au and Pd deposited on TiO2 catalyst. , 2004, Water research.

[263]  Kimberly A. Gray,et al.  Explaining the Enhanced Photocatalytic Activity of Degussa P25 Mixed-Phase TiO2 Using EPR , 2003 .

[264]  P. Ricci,et al.  Visible-light photocurrent response of TiO2-polyheptazine hybrids: evidence for interfacial charge-transfer absorption. , 2011, Physical chemistry chemical physics : PCCP.

[265]  X. Lin,et al.  Photocatalytic Activities of Heterojunction Semiconductors Bi2O3/BaTiO3: A Strategy for the Design of Efficient Combined Photocatalysts , 2007 .

[266]  Jinhua Ye,et al.  Photoelectrochemical properties of nanomultiple CaFe2O4/ZnFe2O4 pn junction photoelectrodes. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[267]  Jun Liu,et al.  Preparation and characterization of heterojunction semiconductor YFeO_3/TiO_2 with an enhanced photocatalytic activity , 2010 .

[268]  Y. Liu,et al.  Photo-oxidation of methanol using MoO3TiO2: Catalyst structure and reaction selectivity , 1985 .

[269]  Shaowen Cao,et al.  Red phosphor/g-C3N4 heterojunction with enhanced photocatalytic activities for solar fuels production , 2013 .

[270]  Gang Xiong,et al.  Photoemission Electron Microscopy of TiO2 Anatase Films Embedded with Rutile Nanocrystals , 2007 .

[271]  S. Martin,et al.  Environmental Applications of Semiconductor Photocatalysis , 1995 .

[272]  Jiaguo Yu,et al.  Novel urea assisted hydrothermal synthesis of hierarchical BiVO4/Bi2O2CO3 nanocomposites with enhanced visible-light photocatalytic activity , 2011 .

[273]  Jiaguo Yu,et al.  Visible light photocatalytic H₂-production activity of CuS/ZnS porous nanosheets based on photoinduced interfacial charge transfer. , 2011, Nano letters.

[274]  L. Österlund,et al.  A comparative study of the photocatalytic oxidation of propane on anatase, rutile, and mixed-phase anatase–rutile TiO2 nanoparticles: Role of surface intermediates , 2007 .

[275]  H. Bai,et al.  The design of a hierarchical photocatalyst inspired by natural forest and its usage on hydrogen generation , 2012 .

[276]  Akihiko Kudo,et al.  Spectral sensitization of a TiO2 semiconductor electrode by CdS microcrystals and its photoelectrochemical properties , 1993 .

[277]  J. S. Lees,et al.  A structural investigation of titanium dioxide photocatalysts , 1991 .

[278]  Jianguo Guan,et al.  Enhanced Interfacial Charge Transfer and Visible Photocatalytic Activity for Hydrogen Evolution from a Ta2O5‐based Mesoporous Composite by the Incorporation of Quantum‐Sized CdS , 2012 .

[279]  Yiying Wu,et al.  Preparation, characterization and enhanced visible-light photocatalytic activities of BiPO4/BiVO4 composites , 2013 .

[280]  Jiaguo Yu,et al.  Hydrothermal synthesis and photocatalytic activity of mesoporous titania hollow microspheres , 2008 .

[281]  Wenzhong Wang,et al.  Enhancing visible-light-induced photocatalytic activity by coupling with wide-band-gap semiconductor: A case study on Bi2WO6/TiO2 , 2012 .

[282]  I. Boz,et al.  Preparation, characterization and photocatalytic activity of TiO2–ZrO2 binary oxide nanoparticles , 2012 .

[283]  S. Jiao,et al.  Hierarchical metastable γ-TaON hollow structures for efficient visible-light water splitting , 2013 .

[284]  Kai Zhang,et al.  Graphene‐Based Materials for Hydrogen Generation from Light‐Driven Water Splitting , 2013, Advanced materials.

[285]  Shih‐Yuan Lu,et al.  ZnFe2O4 decorated CdS nanorods as a highly efficient, visible light responsive, photochemically stable, magnetically recyclable photocatalyst for hydrogen generation. , 2013, Nanoscale.

[286]  N. Machado,et al.  Influence of thermal treatment on the structure and photocatalytic activity of TiO2 P25 , 2005 .

[287]  Lijuan Wang,et al.  Preparation of p–n junction Cu2O/BiVO4 heterogeneous nanostructures with enhanced visible-light photocatalytic activity , 2013 .

[288]  Hongzheng Chen,et al.  Si/ZnO core–shell nanowire arrays for photoelectrochemical water splitting , 2011 .

[289]  Wei Sun,et al.  Synthesis of visible-light absorbing CoFe{sub 2}O{sub 4} sensitized TiO{sub 2} nanotube arrays electrode with enhanced photoelectrochemical performance , 2013 .

[290]  Fan Zuo,et al.  Visible light-driven α-Fe₂O₃ nanorod/graphene/BiV₁-xMoxO₄ core/shell heterojunction array for efficient photoelectrochemical water splitting. , 2012, Nano letters.

[291]  Jinhua Ye,et al.  Carbon Nitride Polymers Sensitized with N-Doped Tantalic Acid for Visible Light-Induced Photocatalytic Hydrogen Evolution , 2010 .

[292]  J. Weber,et al.  Photocatalytic activity of Cu2O/TiO2, Bi2O3/TiO2 and ZnMn2O4/TiO2 heterojunctions , 2005 .

[293]  Yi Zheng,et al.  BiVO4/TiO2 nanocrystalline heterostructure: A wide spectrum responsive photocatalyst towards the highly efficient decomposition of gaseous benzene , 2011 .

[294]  J. Loo,et al.  A three-way synergy of triple-modified Bi2WO6/Ag/N-TiO2 nanojunction film for enhanced photogenerated charges utilization. , 2011, Chemical communications.

[295]  Shuxin Ouyang,et al.  A new heterojunction Ag3PO4/Cr-SrTiO3 photocatalyst towards efficient elimination of gaseous organic pollutants under visible light irradiation , 2013 .

[296]  Z. Xiong,et al.  Titanate@TiO2 core–shell nanobelts with an enhanced photocatalytic activity , 2013 .

[297]  M. Miyauchi,et al.  Efficient Visible Light Active CaFe2O4/WO3 Based Composite Photocatalysts: Effect of Interfacial Modification , 2009 .

[298]  Gang Wang,et al.  N‐Doped Nb2O5 Sensitized by Carbon Nitride Polymer – Synthesis and High Photocatalytic Activity under Visible Light , 2012 .

[299]  K. Domen,et al.  Photocatalytic Water Splitting: Recent Progress and Future Challenges , 2010 .

[300]  K. Sayama,et al.  Highly efficient photoelectrochemical water splitting using a thin film photoanode of BiVO4/SnO2/WO3 multi-composite in a carbonate electrolyte. , 2012, Chemical communications.

[301]  P. Vijayan,et al.  Enhanced visible-light photocatalytic activity of V2O5/S-TiO2 nanocomposites , 2012 .

[302]  E. Xie,et al.  WO3 nanoparticles decorated on both sidewalls of highly porous TiO2 nanotubes to improve UV and visible-light photocatalysis , 2013 .

[303]  L. Mädler,et al.  Photocatalytic H2 Evolution over TiO2 Nanoparticles. The Synergistic Effect of Anatase and Rutile , 2010 .

[304]  M. Batzill Fundamental aspects of surface engineering of transition metal oxide photocatalysts , 2011 .

[305]  N. Lewis,et al.  Powering the planet: Chemical challenges in solar energy utilization , 2006, Proceedings of the National Academy of Sciences.

[306]  Jiangtian Li,et al.  Preparation and visible-light photocatalytic activity of In2S3/TiO2 composite , 2010 .

[307]  Michio Matsumura,et al.  Morphology of a TiO2 Photocatalyst (Degussa, P-25) Consisting of Anatase and Rutile Crystalline Phases , 2001 .

[308]  Frank E. Osterloh,et al.  Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. , 2013, Chemical Society reviews.

[309]  Frank E. Osterloh,et al.  Inorganic Materials as Catalysts for Photochemical Splitting of Water , 2008 .

[310]  K. Domen,et al.  A copper and chromium based nanoparticulate oxide as a noble-metal-free cocatalyst for photocatalytic water splitting , 2011 .

[311]  Gang Liu,et al.  g-C(3)N(4) coated SrTiO(3) as an efficient photocatalyst for H(2) production in aqueous solution under visible light irradiation , 2011 .

[312]  Z. Lü,et al.  Ag2O–Bi2O3 composites: synthesis, characterization and high efficient photocatalytic activities , 2012 .

[313]  Qing Chen,et al.  CdS quantum dots sensitized TiO2 nanotube-array photoelectrodes. , 2008, Journal of the American Chemical Society.

[314]  M. Sayagués,et al.  Photoactivity of anatase–rutile TiO2 nanocrystalline mixtures obtained by heat treatment of homogeneously precipitated anatase , 2005 .

[315]  Jiaguo Yu,et al.  Graphene-Based Photocatalysts for Hydrogen Generation. , 2013, The journal of physical chemistry letters.

[316]  Xinru Li,et al.  Mesoporous yolk-shell SnS2-TiO2 visible photocatalysts with enhanced activity and durability in Cr(VI) reduction. , 2013, Nanoscale.

[317]  Lei Ge,et al.  Synthesis and Efficient Visible Light Photocatalytic Hydrogen Evolution of Polymeric g-C3N4 Coupled with CdS Quantum Dots , 2012 .

[318]  G. Lu,et al.  Boron oxynitride nanoclusters on tungsten trioxide as a metal-free cocatalyst for photocatalytic oxygen evolution from water splitting. , 2012, Nanoscale.

[319]  S. Poznyak,et al.  Structural, Optical, and Photoelectrochemical Properties of Nanocrystalline TiO2−In2O3 Composite Solids and Films Prepared by Sol−Gel Method , 2001 .

[320]  Ling Zhang,et al.  3D Bi2WO6/TiO2 Hierarchical Heterostructure: Controllable Synthesis and Enhanced Visible Photocatalytic Degradation Performances , 2009 .

[321]  P. Smirniotis,et al.  Interaction of anatase and rutile TiO2 particles in aqueous photooxidation , 2003 .

[322]  Y. Mao,et al.  Improved separation efficiency of photogenerated carriers for Fe2O3/SrTiO3 heterojunction semiconductor , 2013 .

[323]  H. Bai,et al.  Electrospun TiO2/SnO2 nanofibers with innovative structure and chemical properties for highly efficient photocatalytic H2 generation , 2012 .

[324]  Jinlong Zhang,et al.  Synthesis of Controllable Crystalline Nano-TiO2 at Low Temperature , 2004 .

[325]  Yongsheng Zhu,et al.  Layered nanojunctions for hydrogen-evolution catalysis. , 2013, Angewandte Chemie.

[326]  Chang Soo Kim,et al.  Ultraviolet response and photoelectrochemical properties of a rutile and anatase mixture grown onto single-wall carbon nanotubes at a low temperature using nano-cluster deposition , 2011 .

[327]  S. Dahl,et al.  Hydrogen production using a molybdenum sulfide catalyst on a titanium-protected n(+)p-silicon photocathode. , 2012, Angewandte Chemie.

[328]  Prashant V. Kamat,et al.  Photosensitization of TiO2 Nanostructures with CdS Quantum Dots: Particulate versus Tubular Support Architectures , 2009 .

[329]  Tsunehiro Tanaka,et al.  Photocatalytic Oxidation of Alcohols over TiO2 Covered with Nb2O5 , 2012 .

[330]  J. Zhang,et al.  Femtosecond studies of interparticle electron transfer in a coupled CdS–TiO2 colloidal system , 1994 .

[331]  A. Mudring,et al.  Mild yet phase-selective preparation of TiO2 nanoparticles from ionic liquids--a critical study. , 2013, Nanoscale.

[332]  Jianguo Guan,et al.  Facile preparation and size-dependent photocatalytic activity of Cu2O nanocrystals modified titania for hydrogen evolution , 2013 .

[333]  B. Ohtani,et al.  What is Degussa (Evonik) P25? Crystalline composition analysis, reconstruction from isolated pure particles and photocatalytic activity test , 2010 .

[334]  J. Moulijn,et al.  How phase composition influences optoelectronic and photocatalytic properties of TiO2 , 2011 .

[335]  A. J. Frank,et al.  In2S3 Atomic Layer Deposition and Its Application as a Sensitizer on TiO2 Nanotube Arrays for Solar Energy Conversion , 2010 .

[336]  Huiru Ma,et al.  Facile preparation of magnetic γ-Fe₂O₃/TiO₂ Janus hollow bowls with efficient visible-light photocatalytic activities by asymmetric shrinkage. , 2012, Nanoscale.

[337]  Binbin Chang,et al.  Novel C3N4–CdS composite photocatalysts with organic–inorganic heterojunctions: in situ synthesis, exceptional activity, high stability and photocatalytic mechanism , 2013 .