The time-of-detection method for aural avian point counts is a new method of estimating abundance, allowing for uncertain probability of detection. The method has been specifically designed to allow for variation in singing rates of birds. It involves dividing the time interval of the point count into several subintervals and recording the detection history of the subintervals when each bird sings. The method can be viewed as generating data equivalent to closed capture–recapture information. The method is different from the distance and multiple-observer methods in that it is not required that all the birds sing during the point count. As this method is new and there is some concern as to how well individual birds can be followed, we carried out a field test of the method using simulated known populations of singing birds, using a laptop computer to send signals to audio stations distributed around a point. The system mimics actual aural avian point counts, but also allows us to know the size and spatial distribution of the populations we are sampling. Fifty 8-min point counts (broken into four 2-min intervals) using eight species of birds were simulated. Singing rate of an individual bird of a species was simulated following a Markovian process (singing bouts followed by periods of silence), which we felt was more realistic than a truly random process. The main emphasis of our paper is to compare results from species singing at (high and low) homogenous rates per interval with those singing at (high and low) heterogeneous rates. Population size was estimated accurately for the species simulated, with a high homogeneous probability of singing. Populations of simulated species with lower but homogeneous singing probabilities were somewhat underestimated. Populations of species simulated with heterogeneous singing probabilities were substantially underestimated. Underestimation was caused by both the very low detection probabilities of all distant individuals and by individuals with low singing rates also having very low detection probabilities. RESUME. La methode fondee sur le temps de detection utilisee dans le contexte des points d’ecoute represente une nouvelle approche pour estimer l’abondance des oiseaux en tenant compte de la probabilite incertaine de detection. Cette methode a ete specialement concue pour tenir compte du taux variable de chant observe chez les oiseaux. Elle consiste a diviser l’intervalle de temps passe a un point d’ecoute en sous-intervalles et de noter l’historique de detection des sous-intervalles ou chaque individu est detecte. Les donnees obtenues par cette methode peuvent etre considerees comme etant equivalentes a celles obtenues par la capture-recapture dans une population fermee. La methode differe des approches fondees sur la distance et les observateurs multiples du fait qu’elle n’exige pas que tous les individus chantent durant le point d’ecoute. Puisque cette methode est nouvelle et qu’il existe une incertitude quant a la capacite de suivre les individus, nous avons effectue une evaluation sur le terrain de sa precision en utilisant des simulations sur des populations connues d’oiseaux chanteurs a l’aide d’un ordinateur portatif qui envoyait des signaux a des stations audio distribuees autour du point d’ecoute. Ce systeme imite un veritable point Colorado Division of Wildlife, Cooperative Fish and Wildlife Research Unit, Dept of Zoology, North Carolina State University Avian Conservation and Ecology Ecologie et conservation des oiseaux 2(2): 13 http://www.ace-eco.org/vol2/iss2/art13/ d’ecoute tout en permettant de connaitre l’effectif et la distribution des populations echantillonnees. Cinquante points d’ecoute de 8 min (separes en intervalles de 2 min) ont ete simules pour huit especes d’oiseaux. Le taux de vocalisation de chaque individu a ete simule a l’aide d’une chaine de Markov (periodes de chant suivies de periodes de silence), ce qui nous semblait plus realiste qu’un processus purement aleatoire. L’objectif principal de notre article etait de comparer les resultats pour des especes chantant a une frequence homogene (elevee ou faible) par intervalle avec d’autres especes chantant a des frequences heterogenes (elevees ou faibles). L’effectif de la population a ete estime precisement pour les especes simulees ayant une frequence de vocalisation homogene et elevee. L’effectif des populations des especes simulees presentant une frequence de vocalisation faible mais homogene a ete legerement sous-estime. Dans les cas des especes chantant a des frequences heterogenes, les populations etaient fortement sousestimees. La sous-estimation etait causee a la fois par la faible probabilite de detection de tous les individus eloignes et des individus chantant a des frequences faibles.
[1]
Kenneth H. Pollock,et al.
A REMOVAL MODEL FOR ESTIMATING DETECTION PROBABILITIES FROM POINT-COUNT SURVEYS
,
2002
.
[2]
J. Nichols,et al.
Statistical inference for capture-recapture experiments
,
1992
.
[3]
Kenneth H. Pollock,et al.
ESTIMATING DETECTION PROBABILITIES FROM MULTIPLE-OBSERVER POINT COUNTS
,
2006
.
[4]
M. Alldredge,et al.
Avian Point Count Surveys: Estimating Components of the Detection Process
,
2004
.
[5]
W. Link.
Nonidentifiability of Population Size from Capture‐Recapture Data with Heterogeneous Detection Probabilities
,
2003,
Biometrics.
[6]
K. Pollock,et al.
A Field Evaluation of Distance Measurement Error in Auditory Avian Point Count Surveys
,
2007
.
[7]
David R. Anderson,et al.
Model Selection and Inference: A Practical Information-Theoretic Approach
,
2001
.
[8]
J. Nichols,et al.
A DOUBLE-OBSERVER APPROACH FOR ESTIMATING DETECTION PROBABILITY AND ABUNDANCE FROM POINT COUNTS
,
2000
.
[9]
Jonathan Bart,et al.
MONITORING THE ABUNDANCE OF BIRD POPULATIONS
,
2005
.
[10]
H. Marsh,et al.
Correcting for visibility bias in strip transect aerial surveys of aquatic fauna
,
1989
.
[11]
Calvin Zippin,et al.
The Removal Method of Population Estimation
,
1958
.
[12]
S. Pledger.
Unified Maximum Likelihood Estimates for Closed Capture–Recapture Models Using Mixtures
,
2000,
Biometrics.
[13]
K. Pollock,et al.
Factors affecting aural detections of songbirds.
,
2007,
Ecological applications : a publication of the Ecological Society of America.
[14]
C. S. Robbins,et al.
Birds of North America : a guide to field identification
,
1966
.
[15]
James D. Nichols,et al.
Analysis and Management of Animal Populations: Modeling, Estimation and Decision Making
,
2002
.
[16]
J. Andrew Royle,et al.
ESTIMATING ABUNDANCE FROM REPEATED PRESENCE–ABSENCE DATA OR POINT COUNTS
,
2003
.
[17]
S. Collins,et al.
Chapter 2 – Vocal fighting and flirting: the functions of birdsong
,
2004
.
[18]
Kenneth H. Pollock,et al.
TIME-OF-DETECTION METHOD FOR ESTIMATING ABUNDANCE FROM POINT-COUNT SURVEYS
,
2007
.
[19]
K. Pollock,et al.
EXPERIMENTAL ANALYSIS OF THE AUDITORY DETECTION PROCESS ON AVIAN POINT COUNTS
,
2007
.
[20]
K. Burnham,et al.
Estimation of the size of a closed population when capture probabilities vary among animals
,
1978
.
[21]
K. Burnham,et al.
Program MARK: survival estimation from populations of marked animals
,
1999
.
[22]
J. Alho.
Logistic regression in capture-recapture models.
,
1990,
Biometrics.
[23]
G. Seber,et al.
The estimation of animal abundance and related parameters
,
1974
.
[24]
Jerome P. Brewster.
Spatial and Temporal Variation in the Singing Rates of Two Forest Songbirds, the Ovenbird and the Black-throated Blue Warbler: Implications for Aural Counts of Songbirds.
,
2007
.
[25]
R. Huggins.
On the statistical analysis of capture experiments
,
1989
.
[26]
J. Andrew Royle,et al.
MODELING AVIAN ABUNDANCE FROM REPLICATED COUNTS USING BINOMIAL MIXTURE MODELS
,
2005
.
[27]
R. Huggins.
Some practical aspects of a conditional likelihood approach to capture experiments
,
1991
.
[28]
Kenneth H. Pollock,et al.
Separating components of detection probability in abundance estimation: an overview with diverse examples
,
2004
.