Adaptive Particle Swarm Optimization with Feedback Control of Diversity

Swarm-diversity is an important factor influencing the global convergence of particle swarm optimization (PSO). In order to overcome the premature convergence, the paper introduced a negative feedback mechanism into particle swarm optimization and developed an adaptive PSO. The improved method takes advantage of the swarm-diversity to control the tuning of the inertia weight (PSO-DCIW), which in turn can adjust the swarm-diversity adaptively and contribute to a successful global search. The proposed PSO-DCIW was applied to some well-known benchmarks and compared with the other notable improved methods for PSO. The relative experimental results show PSO-DCIW is a robust global optimization method for the complex multimodal functions, which can improve the performance of the standard PSO and alleviate the premature convergence validly.

[1]  R. Eberhart,et al.  Empirical study of particle swarm optimization , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[2]  Maurice Clerc,et al.  The particle swarm - explosion, stability, and convergence in a multidimensional complex space , 2002, IEEE Trans. Evol. Comput..

[3]  Xiaodong Li,et al.  Adaptively Choosing Neighbourhood Bests Using Species in a Particle Swarm Optimizer for Multimodal Function Optimization , 2004, GECCO.

[4]  Russell C. Eberhart,et al.  Tracking and optimizing dynamic systems with particle swarms , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[5]  Saman K. Halgamuge,et al.  Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients , 2004, IEEE Transactions on Evolutionary Computation.

[6]  R. Eberhart,et al.  Particle Swarm Optimization-Neural Networks, 1995. Proceedings., IEEE International Conference on , 2004 .

[7]  Rasmus K. Ursem,et al.  Diversity-Guided Evolutionary Algorithms , 2002, PPSN.

[8]  Yoshikazu Fukuyama,et al.  A particle swarm optimization for reactive power and voltage control in electric power systems , 1999, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[9]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[10]  Thomas Kiel Rasmussen,et al.  Hybrid Particle Swarm Optimiser with breeding and subpopulations , 2001 .

[11]  Yue Shi,et al.  A modified particle swarm optimizer , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[12]  Andries Petrus Engelbrecht,et al.  Cooperative learning in neural networks using particle swarm optimizers , 2000, South Afr. Comput. J..

[13]  Frans van den Bergh,et al.  Particle Swarm Weight Initialization In Multi-Layer Perceptron Artificial Neural Networks , 1999 .

[14]  Marco Dorigo,et al.  Swarm intelligence: from natural to artificial systems , 1999 .

[15]  Jacques Riget,et al.  A Diversity-Guided Particle Swarm Optimizer - the ARPSO , 2002 .

[16]  R. Eberhart,et al.  Fuzzy adaptive particle swarm optimization , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[17]  Suganthan [IEEE 1999. Congress on Evolutionary Computation-CEC99 - Washington, DC, USA (6-9 July 1999)] Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406) - Particle swarm optimiser with neighbourhood operator , 1999 .