A Global Image Feature Construction Method Based on Local Jet Structure

Abstract This article presents a novel and robust feature descriptor called the multi-scale autoconvolution on local jet structure (MSALJS), which is quasi-invariant to affine transformation. The MSALJS, a global image feature descriptor, is based on the derivatives that describe the image local structure to compute the multi-scale autoconvolution moment. Experimental data demonstrate that the MSALJS can be used in practical applications in which the object is deformed in various ways, such as particular occlusion, view angle change, and so on.

[1]  Jean-Michel Morel,et al.  ASIFT: A New Framework for Fully Affine Invariant Image Comparison , 2009, SIAM J. Imaging Sci..

[2]  Cordelia Schmid,et al.  Scale & Affine Invariant Interest Point Detectors , 2004, International Journal of Computer Vision.

[3]  Jan Flusser,et al.  Rotation and noise invariant near-infrared face recognition by means of Zernike moments and spectral regression discriminant analysis , 2013, J. Electronic Imaging.

[4]  Adam Baumberg,et al.  Reliable feature matching across widely separated views , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[5]  Andrea J. van Doorn,et al.  The Structure of Visual Spaces , 2008, Journal of Mathematical Imaging and Vision.

[6]  Jan Flusser,et al.  Combined blur and affine moment invariants and their use in pattern recognition , 2003, Pattern Recognit..

[7]  Ming-Kuei Hu,et al.  Visual pattern recognition by moment invariants , 1962, IRE Trans. Inf. Theory.

[8]  Jan Flusser,et al.  Affine moment invariants generated by graph method , 2011, Pattern Recognit..

[9]  Max A. Viergever,et al.  General intensity transformations and differential invariants , 1994, Journal of Mathematical Imaging and Vision.

[10]  Esa Rahtu,et al.  Affine invariant pattern recognition using multiscale autoconvolution , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  Alexander Kadyrov,et al.  The Trace Transform and Its Applications , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  J. Koenderink,et al.  Representation of local geometry in the visual system , 1987, Biological Cybernetics.

[13]  Jan Flusser,et al.  Pattern recognition by affine moment invariants , 1993, Pattern Recognit..

[14]  David G. Lowe,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004, International Journal of Computer Vision.

[15]  Tony Lindeberg,et al.  Scale Selection Properties of Generalized Scale-Space Interest Point Detectors , 2012, Journal of Mathematical Imaging and Vision.

[16]  Arnold W. M. Smeulders,et al.  The Amsterdam Library of Object Images , 2004, International Journal of Computer Vision.

[17]  Chunhui Cui,et al.  Scale- and Affine-Invariant Fan Feature , 2011, IEEE Transactions on Image Processing.

[18]  Xavier Binefa,et al.  A sparse curvature-based detector of affine invariant blobs , 2012, Comput. Vis. Image Underst..

[19]  Yuan Yan Tang,et al.  An affine invariant discriminate analysis with canonical correlation analysis , 2012, Neurocomputing.

[20]  J. Koenderink The structure of images , 2004, Biological Cybernetics.