4-Holes in point sets
暂无分享,去创建一个
Ruy Fabila Monroy | Oswin Aichholzer | Jorge Urrutia | Clemens Huemer | Birgit Vogtenhuber | Thomas Hackl | Hernán González-Aguilar | Marco A. Heredia | J. Urrutia | O. Aichholzer | T. Hackl | B. Vogtenhuber | C. Huemer | H. González-Aguilar | M. A. Heredia
[1] Pavel Valtr. Convex independent sets and 7-holes in restricted planar point sets , 1992, Discret. Comput. Geom..
[2] Marc Noy,et al. Lower bounds on the number of crossing-free subgraphs of KN , 2000, Comput. Geom..
[3] Franz Aurenhammer,et al. Enumerating Order Types for Small Point Sets with Applications , 2002, Order.
[4] G. Fejes Tóth. PLANAR POINT SETS WITH A SMALL NUMBER OF EMPTY CONVEX POLYGONS , 2004 .
[5] Carlos M. Nicolas. The Empty Hexagon Theorem , 2007, Discret. Comput. Geom..
[6] Adrian Dumitrescu. Planar sets with few empty convex polygons , 1998, CCCG.
[7] Alexander Pilz,et al. Lower Bounds for the Number of Small Convex k-Holes , 2014, CCCG.
[8] J. Horton. Sets with No Empty Convex 7-Gons , 1983, Canadian Mathematical Bulletin.
[9] P. Valtr. On the minimum number of empty polygons in planar point sets , 1992 .
[10] Tobias Gerken. Empty Convex Hexagons in Planar Point Sets , 2008, Discret. Comput. Geom..
[11] Oswin Aichholzer,et al. The point set order type data base: A collection of applications and results , 2001, CCCG.
[12] Heiko Harborth. Konvexe Fünfecke in ebenen Punktmengen. , 1978 .
[13] Jorge Urrutia,et al. On k-Gons and k-Holes in Point Sets , 2014, CCCG.
[14] Alfredo Garcia. A Note on the Number of Empty Triangles , 2011, EGC.
[15] Paul Erdös,et al. Some Old and New Problems in Combinatorial Geometry , 1984 .
[16] János Pach,et al. Research problems in discrete geometry , 2005 .
[17] Birgit Vogtenhuber,et al. Combinatorial Aspects of [Colored] Point Sets in the Plane , 2011 .
[18] Micha Sharir,et al. On empty convex polygons in a planar point set , 2006, J. Comb. Theory, Ser. A.
[19] Oswin Aichholzer. Empty ] [ colored ] k-gons-Recent results on some Erdős-Szekeres type problems , 2009 .
[20] János Pach,et al. A modular version of the Erdõs-Szekeres theorem , 2001 .