Unsupervised Kernel Function Building Using Maximization of Information Potential Variability
暂无分享,去创建一个
Andrés Marino Álvarez-Meza | Germán Castellanos-Domínguez | David Cárdenas-Peña | G. Castellanos-Domínguez | A. Álvarez-Meza | D. Cárdenas-Peña
[1] Weifeng Liu,et al. Kernel Adaptive Filtering: A Comprehensive Introduction , 2010 .
[2] Jose C. Principe,et al. Information Theoretic Learning - Renyi's Entropy and Kernel Perspectives , 2010, Information Theoretic Learning.
[3] Pietro Perona,et al. Self-Tuning Spectral Clustering , 2004, NIPS.
[4] Robert Jenssen,et al. Information cut and information forces for clustering , 2003, 2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718).
[5] Michael I. Jordan,et al. On Spectral Clustering: Analysis and an algorithm , 2001, NIPS.
[6] José Carlos Príncipe,et al. Mixture kernel least mean square , 2013, The 2013 International Joint Conference on Neural Networks (IJCNN).
[7] José Carlos Príncipe,et al. Information Theoretic Learning with Infinitely Divisible Kernels , 2013, ICLR.
[8] Badong Chen,et al. An adaptive kernel width update for correntropy , 2012, The 2012 International Joint Conference on Neural Networks (IJCNN).
[9] José Carlos Príncipe,et al. Advanced search algorithms for information-theoretic learning with kernel-based estimators , 2004, IEEE Transactions on Neural Networks.
[10] Weifeng Liu,et al. Kernel Adaptive Filtering , 2010 .
[11] Lluís A. Belanche Muñoz,et al. Developments in kernel design , 2013, ESANN.
[12] José Carlos Príncipe,et al. Kernel width adaptation in information theoretic cost functions , 2010, 2010 IEEE International Conference on Acoustics, Speech and Signal Processing.
[13] B. Silverman. Density estimation for statistics and data analysis , 1986 .
[14] Hong Yu,et al. Local density adaptive similarity measurement for spectral clustering , 2011, Pattern Recognit. Lett..