Magnetostratigraphy of the Tuotuohe Formation in the Tuotuohe Basin, Central-Northern Tibetan Plateau: Paleolatitude and Paleoenvironmental Implications

Paleolatitude evolution could provide a general paleo-location framework for explaining the paleoclimate change and tectonic deformation in geological time. Strengthening the paleolatitude study of the Tuotuohe Basin is important for understanding the history and mechanism of the tectonic uplift process in the north-central Tibetan Plateau. In this study, we introduced the magnetostratigraphy for the Tuotuohe-D (TTH-D) section in the Tuotuohe Basin, central-northern Tibetan Plateau, in order to constrain the chronology and to reconstruct the paleolatitude of the basin during the deposition of the Tuotuohe Formation. The results indicated that the Tuotuohe Formation in the TTH-D section was deposited between 38.5 and ~36.7 Ma. Combining this age with the results from the Tuotuohe section indicates that the age of the Tuotuohe Formation spans the interval from >38.5 Ma to ~33 Ma. Additionally, other paleomagnetic data of the Tuotuohe Formation from the Tuotuohe section, combined with the data from this study, indicate that the paleolatitude of the Tuotuohe Basin during the late Eocene was 25.9 ± 4.2°. That means that the Tuotuohe Basin was located in a subtropical anticyclonic zone and that the paleoenvironment during the late Eocene might be controlled by subtropical high pressure. Additionally, paleomagnetic results from the Qiangtang terrane and the bordering regions are combined with the results of our study, which suggest that the paleolatitude of the Tuotuohe Basin at ~26 Ma coincides well with the Eurasian apparent polar wander path for that interval, and that the N-S India–Asia convergence was reduced or ceased at ~26 Ma in the Tuotuohe Basin.

[1]  D. Jiang,et al.  No monsoon-dominated climate in northern subtropical Asia before 35 Ma , 2022, Global and Planetary Change.

[2]  Yibo Yang,et al.  Reorganization of Asian climate in relation to Tibetan Plateau uplift , 2022, Nature Reviews Earth & Environment.

[3]  C. Garzione,et al.  Timing and mechanisms of Tibetan Plateau uplift , 2022, Nature Reviews Earth & Environment.

[4]  R. Tada,et al.  From desert to monsoon: irreversible climatic transition at ~ 36 Ma in southeastern Tibetan Plateau , 2022, Progress in Earth and Planetary Science.

[5]  P. Valdes,et al.  The rise and demise of the Paleogene Central Tibetan Valley , 2022, Science advances.

[6]  Chunhui Song,et al.  Paleogeography control of Indian monsoon intensification and expansion at 41 Ma. , 2021, Science bulletin.

[7]  D. V. van Hinsbergen,et al.  Reliability of palaeomagnetic poles from sedimentary rocks , 2021, Geophysical Journal International.

[8]  Alice C Hughes,et al.  A Middle Eocene lowland humid subtropical “Shangri-La” ecosystem in central Tibet , 2020, Proceedings of the National Academy of Sciences.

[9]  Chengshan Wang,et al.  Revised chronology of central Tibet uplift (Lunpola Basin) , 2020, Science Advances.

[10]  Scott R. Miller,et al.  The magnificent seven: A proposal for modest revision of the quality index , 2020, Tectonophysics.

[11]  R. Zhu,et al.  Does pulsed Tibetan deformation correlate with Indian plate motion changes? , 2020 .

[12]  Chengshan Wang,et al.  Burial and exhumation of the Hoh Xil Basin, northern Tibetan Plateau: Constraints from detrital (U‐Th)/He ages , 2019, Basin Research.

[13]  D. Heslop,et al.  Domain State Diagnosis in Rock Magnetism: Evaluation of Potential Alternatives to the Day Diagram , 2019, Journal of Geophysical Research: Solid Earth.

[14]  Tandong Yao,et al.  Tackling on environmental changes in Tibetan Plateau with focus on water, ecosystem and adaptation. , 2019, Science Bulletin.

[15]  P. Valdes,et al.  No high Tibetan Plateau until the Neogene , 2019, Science Advances.

[16]  G. Muttoni,et al.  An expanded Tethyan Kimmeridgian magneto-biostratigraphy from the S'Adde section (Sardinia): Implications for the Jurassic timescale , 2018, Palaeogeography, Palaeoclimatology, Palaeoecology.

[17]  A. Roberts,et al.  Magnetostratigraphy of the Fenghuoshan Group in the Hoh Xil Basin and its tectonic implications for India–Eurasia collision and Tibetan Plateau deformation , 2018 .

[18]  Peng Zhang,et al.  Late Cretaceous–Cenozoic basin evolution and topographic growth of the Hoh Xil Basin, central Tibetan Plateau , 2017 .

[19]  Changping Mao,et al.  Paleomagnetism of Eocene red-beds in the eastern part of the Qiangtang Terrane and its implications for uplift and southward crustal extrusion in the southeastern edge of the Tibetan Plateau , 2017 .

[20]  Chengshan Wang,et al.  Reduced convergence within the Tibetan Plateau by 26 Ma? , 2017 .

[21]  X. Fang,et al.  Paleomagnetic data bearing on the Mesozoic deformation of the Qiangtang Block: Implications for the evolution of the Paleo- and Meso-Tethys , 2016 .

[22]  X. Fang,et al.  Mesozoic litho- and magneto-stratigraphic evidence from the central Tibetan Plateau for megamonsoon evolution and potential evaporites , 2016 .

[23]  F. Cifelli,et al.  Palaeomagnetism in fold and thrust belts: use with caution , 2016, Special Publications.

[24]  Wang Chengshan,et al.  Cenozoic Vertical‐Axis Rotations of the Hoh Xil Basin, Central–Northern Tibet , 2016 .

[25]  R. Minnett,et al.  PmagPy: Software package for paleomagnetic data analysis and a bridge to the Magnetics Information Consortium (MagIC) Database , 2016 .

[26]  Hong Chang,et al.  Eocene to late Oligocene history of crustal shortening within the Hoh Xil Basin and implications for the uplift history of the northern Tibetan Plateau , 2016 .

[27]  X. Fang,et al.  A Late-Eocene palynological record from the Hoh Xil Basin, northern Tibetan Plateau, and its implications for stratigraphic age, paleoclimate and paleoelevation , 2016 .

[28]  Shilong Piao,et al.  Multispherical interactions and their effects on the Tibetan Plateau's earth system: a review of the recent researches , 2015 .

[29]  A. Sluijs,et al.  A Paleolatitude Calculator for Paleoclimate Studies , 2015, PloS one.

[30]  L. Ding,et al.  Lower Cretaceous Xigaze ophiolites formed in the Gangdese forearc : Evidence from paleomagnetism, sediment provenance, and stratigraphy , 2015 .

[31]  Jianguo Li,et al.  Palynomorph assemblages from the Fenghuoshan Group, southern Qinghai, China: their age and palaeoenvironmental significance , 2015 .

[32]  Chang Hong,et al.  A Cretaceous‐Eocene depositional age for the Fenghuoshan Group, Hoh Xil Basin: Implications for the tectonic evolution of the northern Tibet Plateau , 2014 .

[33]  A. Roberts,et al.  Environmental magnetism: Principles and applications , 2012 .

[34]  E. Tohver,et al.  Phanerozoic polar wander, palaeogeography and dynamics , 2012 .

[35]  Chengshan Wang,et al.  The vast proto-Tibetan Plateau: New constraints from Paleogene Hoh Xil Basin , 2012 .

[36]  L. Thompson,et al.  Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings , 2012 .

[37]  Chengshan Wang,et al.  Cenozoic thrust system, basin evolution, and uplift of the Tanggula Range in the Tuotuohe region, central Tibet , 2012 .

[38]  F. Hilgen,et al.  On the Geologic Time Scale , 2012, Newsletters on Stratigraphy.

[39]  A. Biggin,et al.  Geomagnetic secular variation and the statistics of palaeomagnetic directions , 2011 .

[40]  M. J. Ramón,et al.  Errors in paleomagnetism: Structural control on overlapped vectors – mathematical models , 2011 .

[41]  G. Dupont‐Nivet,et al.  Palaeolatitude and age of the Indo–Asia collision: palaeomagnetic constraints , 2010 .

[42]  W. Boos,et al.  Orographic controls on climate and paleoclimate of Asia: thermal and mechanical roles for the Tibetan Plateau. , 2010 .

[43]  Lisa Tauxe,et al.  Essentials of Paleomagnetism , 2010 .

[44]  J. Qiu China: The third pole , 2008, Nature.

[45]  D. Kent,et al.  Testing corrections for paleomagnetic inclination error in sedimentary rocks: A comparative approach , 2008 .

[46]  Chengshan Wang,et al.  Constraints on the early uplift history of the Tibetan Plateau , 2008, Proceedings of the National Academy of Sciences.

[47]  B. Currie,et al.  Palaeo-altimetry of the late Eocene to Miocene Lunpola basin, central Tibet , 2006, Nature.

[48]  X. Fang,et al.  Shallow bias in Neogene palaeomagnetic directions from the Guide Basin, NE Tibet, caused by inclination error , 2005 .

[49]  J. Torrent,et al.  Temperature dependence of magnetic susceptibility in an argon environment: implications for pedogenesis of Chinese loess/palaeosols , 2005 .

[50]  D. Nourgaliev,et al.  Detrital and pedogenic magnetic mineral phases in the loess/palaeosol sequence at Lingtai (Central Chinese Loess Plateau) , 2003 .

[51]  Chengshan Wang,et al.  Magnetostratigraphy of Tertiary sediments from the Hoh Xil Basin: implications for the Cenozoic tectonic history of the Tibetan Plateau , 2003 .

[52]  Jean Besse,et al.  Apparent and true polar wander and the geometry of the geomagnetic field over the last 200 Myr , 2002 .

[53]  S. Gilder,et al.  New paleomagnetic constraints on central Asian kinematics: Displacement along the Altyn Tagh fault and rotation of the Qaidam Basin , 2002 .

[54]  A. Muxworthy,et al.  Magnetic properties and Mossbauer spectra of urban atmospheric particulate matter: a case study from Munich, Germany , 2002 .

[55]  Xiao-dong Liu,et al.  Sensitivity of East Asian monsoon climate to the uplift of the Tibetan Plateau , 2002 .

[56]  D. Heslop,et al.  Quantification of magnetic coercivity components by the analysis of acquisition curves of isothermal remanent magnetisation , 2001 .

[57]  J. Kutzbach,et al.  Evolution of Asian monsoons and phased uplift of the Himalaya–Tibetan plateau since Late Miocene times , 2001, Nature.

[58]  Chengshan Wang,et al.  Facies analysis and depositional systems of Cenozoic sediments in the Hoh Xil basin, northern Tibet , 2001 .

[59]  M. J. Singer,et al.  Paleoclimatic significance of the temperature‐dependent susceptibility of Holocene Loess along a NW‐SE transect in the Chinese Loess Plateau , 2000 .

[60]  An Yin,et al.  Geologic Evolution of the Himalayan-Tibetan Orogen , 2000 .

[61]  S. Gilder,et al.  New Cretaceous and Early Tertiary paleomagnetic results from Xining‐Lanzhou basin, Kunlun and Qiangtang blocks, China: Implications on the geodynamic evolution of Asia , 1998 .

[62]  B. Maher,et al.  Magnetic properties of modern soils and Quaternary loessic paleosols: paleoclimatic implications. , 1998 .

[63]  Subir K. Banerjee,et al.  Rock-magnetic proxies of climate change from loess -paleosol sediments of the Czech Republic , 1996 .

[64]  L. Tauxe,et al.  Potbellies, wasp-waists, and superparamagnetism in magnetic hysteresis , 1996 .

[65]  A. Roberts,et al.  Wasp-waisted hysteresis loops: Mineral magnetic characteristics and discrimination of components in mixed magnetic systems , 1995 .

[66]  K. Buchan,et al.  Early Silurian palaeolatitude of the Springdale Group redbeds of central Newfoundland: a palaeomagnetic determination with a remanence anisotropy test for inclination error , 1994 .

[67]  M. Raymo,et al.  Tectonic forcing of late Cenozoic climate , 1992, Nature.

[68]  Y. Gallet,et al.  A jackknife for magnetostratigraphy , 1991 .

[69]  M. McElhinny,et al.  Classification of the reversal test in palaeomagnetism , 1990 .

[70]  R. Voo,et al.  The reliability of paleomagnetic data , 1990 .

[71]  D. Watts,et al.  Palaeomagnetic constraints on Himalayan-Tibetan tectonic evolution , 1988, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[72]  R. Butler Magnetic mineralogy of continental deposits, San Juan Basin, New Mexico, and Clark's Fork Basin, Wyoming , 1982 .

[73]  J. Kirschvink The least-squares line and plane and the analysis of palaeomagnetic data , 1980 .

[74]  P. Molnar,et al.  Cenozoic Tectonics of Asia: Effects of a Continental Collision: Features of recent continental tectonics in Asia can be interpreted as results of the India-Eurasia collision. , 1975, Science.

[75]  C. P. Bean Hysteresis Loops of Mixtures of Ferromagnetic Micropowders , 1955 .

[76]  R. Voo,et al.  Non-antipodal directions in magnetostratigraphy: an overprint bias? , 2013 .

[77]  Xixi Zhao,et al.  Palaeomagnetism and 40Ar/39Ar geochronology of upper Palaeogene volcanic rocks from Central Tibet: implications for the Central Asia inclination anomaly, the palaeolatitude of Tibet and post-50 Ma shortening within Asia , 2011 .

[78]  R. Zhu,et al.  Paleomagnetic and geochronological study of the Halaqiaola basalts, southern margin of the Altai Mountains, northern Xinjiang: Constraints on neotectonic convergent patterns north of Tibet , 2006 .

[79]  Yin Haisheng Magnetostratigraphic Studies of Tertiary Continental Redbeds in Wulanwula Lake Area of Northern Tibetan Plateau and Their Geologic Significance , 2004 .

[80]  Lisa Tauxe,et al.  A Simplified Statistical Model for the Geomagnetic Field and the Detection of Shallow Bias in Paleomagnetic Inclinations: was the Ancient Magnetic Field Dipolar? , 2004 .

[81]  D. Heslop,et al.  Analysis of isothermal remanent magnetization acquisition curves using the expectation-maximization algorithm , 2002 .

[82]  W. O'reilly Rock and Mineral Magnetism , 1984 .