Non-Uniform in Time State Estimation of Dynamical Systems

Abstract In this paper it is showed that if a time-varying system is completely detectable then there exists an estimator for this system. Moreover, if a time-varying system is completely observable then there exists an estimator for this system that guarantees convergence of the estimates with “arbitrarily fast” rate of convergence. Finally, it is proved that under the assumption of Lipschitz complete observability, there is a global solution of the observer problem for a time-varying system.

[1]  J. Tsinias Further results on the observer design problem , 1990 .

[2]  J. Grizzle,et al.  On numerical differentiation algorithms for nonlinear estimation , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[3]  Jessy W. Grizzle,et al.  Interpolation and numerical differentiation for observer design , 1994, Proceedings of 1994 American Control Conference - ACC '94.

[4]  Robert Engel,et al.  A continuous-time observer which converges in finite time , 2002, IEEE Trans. Autom. Control..

[5]  Henk Nijmeijer,et al.  Time scaling for observer design with linearizable error dynamics , 2004, Autom..

[6]  Iasson Karafyllis,et al.  A Converse Lyapunov Theorem for Nonuniform in Time Global Asymptotic Stability and Its Application to Feedback Stabilization , 2003, SIAM J. Control. Optim..

[7]  Yacine Chitour,et al.  Time-varying high-gain observers for numerical differentiation , 2002, IEEE Trans. Autom. Control..

[8]  H. Khalil,et al.  Discrete-time implementation of high-gain observers for numerical differentiation , 1999 .

[9]  J. Tsinias Observer design for nonlinear control systems , 1989 .

[10]  A. Teel,et al.  Tools for Semiglobal Stabilization by Partial State and Output Feedback , 1995 .

[11]  MingQing Xiao,et al.  Nonlinear Observer Design in the Siegel Domain , 2002, SIAM J. Control. Optim..

[12]  Franck Plestan,et al.  Synthesis of nonlinear observers via structural analysis and numerical differentiation , 1999, 1999 European Control Conference (ECC).

[13]  Iasson Karafyllis,et al.  ISS property for time-varying systems and application to partial-static feedback stabilization and asymptotic tracking , 1999, IEEE Trans. Autom. Control..

[14]  J. Gauthier,et al.  Observability and observers for non-linear systems , 1986, 1986 25th IEEE Conference on Decision and Control.

[15]  Arthur J. Krener,et al.  Linearization by output injection and nonlinear observers , 1983 .

[16]  Iasson Karafyllis,et al.  Robust output feedback stabilization and nonlinear observer design , 2005, Syst. Control. Lett..

[17]  Eduardo Sontag Comments on integral variants of ISS , 1998 .

[18]  J. Tsinias Backstepping design for time-varying nonlinear systems with unknown parameters , 2000 .

[19]  J. Gauthier,et al.  Deterministic Observation Theory and Applications , 2001 .

[20]  Arie Levant,et al.  Higher-order sliding modes, differentiation and output-feedback control , 2003 .

[21]  Eduardo D. Sontag,et al.  Mathematical Control Theory: Deterministic Finite Dimensional Systems , 1990 .

[22]  MingQing Xiao,et al.  Observers for linearly unobservable nonlinear systems , 2002, Syst. Control. Lett..

[23]  Iasson Karafyllis,et al.  The Non-uniform in Time Small-Gain Theorem for a Wide Class of Control Systems with Outputs , 2004, Eur. J. Control.

[24]  Alessandro Astolfi,et al.  Global complete observability and output-to-state stability imply the existence of a globally convergent observer , 2006, Math. Control. Signals Syst..

[25]  Iasson Karafyllis,et al.  Non‐uniform stabilization of control systems , 2002 .

[26]  H. Khalil,et al.  Output feedback stabilization of fully linearizable systems , 1992 .

[27]  J. Gauthier,et al.  A simple observer for nonlinear systems applications to bioreactors , 1992 .

[28]  A. Levant Robust exact differentiation via sliding mode technique , 1998 .

[29]  Iasson Karafyllis,et al.  Non‐uniform in time robust global asymptotic output stability for discrete‐time systems , 2005, Syst. Control. Lett..

[30]  C. Kravaris,et al.  Nonlinear observer design using Lyapunov's auxiliary theorem , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.