Topology-Caching for Dynamic Particle Volume Raycasting

In this paper we present a volume rendering technique for the ad-hoc visualization of interactive particle systems. We focus on methods for an efficient spatial caching (topology caching) of particles when applying a raycasting approach. Thus, we get a fast reconstruction of the scalar field which is defined by the particles’ entities. The node-cache allows for efficient caching and pre-fetching of a subset of the octree nodes. The influence-cache provides fast access to all particles which contribute to a specific node including level-of-detail particles. Finally, the introduced slab-cache allows for efficient volume rendering and gradient computation. Our algorithms are completely built and managed on the GPU and interactive frame rates for up to several 10 particles are achieved.

[1]  J. Monaghan,et al.  Smoothed particle hydrodynamics: Theory and application to non-spherical stars , 1977 .

[2]  Renato Pajarola,et al.  Deferred blending: Image composition for single-pass point rendering , 2007, Comput. Graph..

[3]  Donald H. House,et al.  Adaptive particles for incompressible fluid simulation , 2008, The Visual Computer.

[4]  Markus H. Gross,et al.  Dynamic Sampling and Rendering of Algebraic Point Set Surfaces , 2008, Comput. Graph. Forum.

[5]  Timo Ropinski,et al.  Advanced illumination techniques for GPU-based volume raycasting , 2008, SIGGRAPH 2008.

[6]  Hanan Samet,et al.  Implementing ray tracing with octrees and neighbor finding , 1989, Comput. Graph..

[7]  Kun Zhou,et al.  Data-Parallel Octrees for Surface Reconstruction , 2011, IEEE Transactions on Visualization and Computer Graphics.

[8]  Lars Linsen,et al.  Surface Extraction from Multi-field Particle Volume Data Using Multi-dimensional Cluster Visualization , 2008, IEEE Transactions on Visualization and Computer Graphics.

[9]  Lee Westover,et al.  Footprint evaluation for volume rendering , 1990, SIGGRAPH.

[10]  Matthias Zwicker,et al.  3 Ideal Resampling 3 . 1 Sampling and Aliasing , 2022 .

[11]  Rüdiger Westermann,et al.  Efficient High-Quality Volume Rendering of SPH Data , 2010, IEEE Transactions on Visualization and Computer Graphics.

[12]  Timo Ropinski,et al.  An Advanced Volume Raycasting Technique using GPU Stream Processing , 2010, GRAPP.

[13]  Miguel Sainz,et al.  Screen space fluid rendering with curvature flow , 2009, I3D '09.

[14]  Klaus Mueller,et al.  GPU-Accelerated Volume Splatting With Elliptical RBFs , 2006, EuroVis.

[15]  J. Wilhelms,et al.  Octrees for faster isosurface generation , 1992, TOGS.

[16]  Diego Rossinelli,et al.  Flow simulations using particles: bridging computer graphics and CFD , 2008, SIGGRAPH '08.

[17]  Nail A. Gumerov,et al.  Fast parallel Particle-To-Grid interpolation for plasma PIC simulations on the GPU , 2008, J. Parallel Distributed Comput..

[18]  Kun Zhou,et al.  Real-time KD-tree construction on graphics hardware , 2008, SIGGRAPH Asia '08.

[19]  Hans-Peter Seidel,et al.  Stackless KD‐Tree Traversal for High Performance GPU Ray Tracing , 2007, Comput. Graph. Forum.

[20]  Renato Pajarola,et al.  Layered Volume Splatting , 2009, ISVC.

[21]  Renato Pajarola,et al.  Adaptive Sampling and Rendering of Fluids on the GPU , 2008, VG/PBG@SIGGRAPH.

[22]  P. Slusallek,et al.  High-speed volume ray casting with CUDA , 2008, 2008 IEEE Symposium on Interactive Ray Tracing.