Lattice QCD at Finite Density An Introductory Review

This is a pedagogical review of the lattice study of finite density QCD. It is intended to provide the minimum necessary content, so that it may be used as an introduction for newcomers to the field and also for those working in nonlattice areas. After a brief introduction in which we discuss the reasons that finite density QCD is an active and important subject, we present the fundamental formulae that are necessary for the treatment given in the following sections. Next, we survey lattice QCD simulational studies of system with small chemical potentials, of which there have been several prominent works reported recently. Then, two-color QCD calculations are discussed, where we are free from the notorious phase problem and have a chance to consider many new features of finite density QCD. Of special note is the result of recent simulations indicating quark pair condensation and the in-medium effect. Tables of SU(3) and SU(2) lattice simulations at finite baryon density are given. In the next section, we survey several related works that may represent a starting point of future development, although some of these works have not attracted much attention yet. This material is described in a pedagogical manner. Starting from a simple 2-d model, we briefly discuss a lattice analysis of the NJL model. We describe a non-perturbative analytic approach, i.e., the strong coupling approximation method and some results. The canonical ensemble approach, instead of the usual grand canonical ensemble may be another route to reach high density. We examine the density of state method and show that this old idea includes the recently proposed factorization method. An alternative method, the complex Langevin equation, and an interesting model, the finite isospin model, are also discussed. We give brief comments on a partial sum with respect to Z3 symmetry and the meron-cluster algorithm, which might solve the sign problem partially or completely. In the Appendix, we discuss several technical points that are useful in practical calculations.