Failure detection in robotic arms using statistical modeling, machine learning and hybrid gradient boosting

Modeling and failure prediction is an important task in manyengineering systems. For this task, the machine learning literaturepresents a large variety of models such as classification trees,random ...

[1]  Guang-Hong Yang,et al.  Simultaneous fault diagnosis for robot manipulators with actuator and sensor faults , 2016, Inf. Sci..

[2]  P. McCullagh,et al.  Generalized Linear Models , 1984 .

[3]  R. Fisher On the Interpretation of χ 2 from Contingency Tables , and the Calculation of P Author , 2022 .

[4]  C. Micchelli,et al.  Approximation by superposition of sigmoidal and radial basis functions , 1992 .

[5]  Eric R. Ziegel,et al.  Generalized Linear Models , 2002, Technometrics.

[6]  Douglas C. Montgomery,et al.  Introduction to Statistical Quality Control , 1986 .

[7]  Rahul Sharma,et al.  Regularization and Variable Selection with Copula Prior , 2017, 1709.05514.

[8]  D. Altman,et al.  Statistics Notes: Diagnostic tests 1: sensitivity and specificity , 1994 .

[9]  F. Sheikholeslam,et al.  Adaptive fault detection and estimation scheme for a class of uncertain nonlinear systems , 2015 .

[10]  Adrian G. Barnett,et al.  An Introduction to Generalized Linear Models, Third Edition , 1990 .

[11]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[12]  Andrew P. Bradley,et al.  The use of the area under the ROC curve in the evaluation of machine learning algorithms , 1997, Pattern Recognit..

[13]  Sreerama K. Murthy,et al.  Automatic Construction of Decision Trees from Data: A Multi-Disciplinary Survey , 1998, Data Mining and Knowledge Discovery.

[14]  Zhi-Hua Zhou,et al.  Isolation Forest , 2008, 2008 Eighth IEEE International Conference on Data Mining.

[15]  Leo Breiman,et al.  Classification and Regression Trees , 1984 .

[16]  Nilanjan Sarkar,et al.  Analysis of order of redundancy relation for robust actuator fault detection , 2009 .

[17]  J. Friedman Greedy function approximation: A gradient boosting machine. , 2001 .

[18]  Meir Kalech,et al.  A hybrid approach for improving unsupervised fault detection for robotic systems , 2017, Expert Syst. Appl..

[19]  A. E. Hoerl,et al.  Ridge regression: biased estimation for nonorthogonal problems , 2000 .

[20]  Yunzhou Zhang,et al.  Motion process monitoring using optical flow–based principal component analysis-independent component analysis method , 2017 .

[21]  Seán F. McLoone,et al.  An enhanced variable selection and Isolation Forest based methodology for anomaly detection with OES data , 2018, Eng. Appl. Artif. Intell..

[22]  Leo Breiman,et al.  Statistical Modeling: The Two Cultures (with comments and a rejoinder by the author) , 2001 .

[23]  Nasser M. Nasrabadi,et al.  Pattern Recognition and Machine Learning , 2006, Technometrics.

[24]  Chee Kheong Siew,et al.  Extreme learning machine: Theory and applications , 2006, Neurocomputing.

[25]  Evangelos Spiliotis,et al.  Statistical and Machine Learning forecasting methods: Concerns and ways forward , 2018, PloS one.

[26]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[27]  Tom Fawcett,et al.  ROC Graphs: Notes and Practical Considerations for Researchers , 2007 .

[28]  George Cybenko,et al.  Approximation by superpositions of a sigmoidal function , 1992, Math. Control. Signals Syst..

[29]  J. Brian Gray,et al.  Introduction to Linear Regression Analysis , 2002, Technometrics.

[30]  Maurizio Filippone,et al.  A comparative evaluation of outlier detection algorithms: Experiments and analyses , 2018, Pattern Recognit..

[31]  H. Zou,et al.  Regularization and variable selection via the elastic net , 2005 .

[32]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[33]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[34]  Trevor Hastie,et al.  Regularization Paths for Generalized Linear Models via Coordinate Descent. , 2010, Journal of statistical software.