An improved data stream summary: the count-min sketch and its applications

[1]  Graham Cormode,et al.  What's new: finding significant differences in network data streams , 2004, IEEE/ACM Transactions on Networking.

[2]  Graham Cormode,et al.  What's hot and what's not: tracking most frequent items dynamically , 2003, TODS.

[3]  David P. Woodruff Optimal space lower bounds for all frequency moments , 2004, SODA '04.

[4]  S. Muthukrishnan,et al.  Data streams: algorithms and applications , 2005, SODA '03.

[5]  Graham Cormode,et al.  Estimating Dominance Norms of Multiple Data Streams , 2003, ESA.

[6]  Divesh Srivastava,et al.  Finding Hierarchical Heavy Hitters in Data Streams , 2003, VLDB.

[7]  Rajeev Motwani,et al.  Approximate Frequency Counts over Data Streams , 2012, VLDB.

[8]  Luca Trevisan,et al.  Counting Distinct Elements in a Data Stream , 2002, RANDOM.

[9]  S. Muthukrishnan,et al.  How to Summarize the Universe: Dynamic Maintenance of Quantiles , 2002, VLDB.

[10]  Moses Charikar,et al.  Finding frequent items in data streams , 2002, Theor. Comput. Sci..

[11]  Johannes Gehrke,et al.  Querying and mining data streams: you only get one look a tutorial , 2002, SIGMOD '02.

[12]  Jennifer Widom,et al.  Models and issues in data stream systems , 2002, PODS.

[13]  Chun Zhang,et al.  Storing and querying ordered XML using a relational database system , 2002, SIGMOD '02.

[14]  Sudipto Guha,et al.  Dynamic multidimensional histograms , 2002, SIGMOD '02.

[15]  Rajeev Rastogi,et al.  Processing complex aggregate queries over data streams , 2002, SIGMOD '02.

[16]  Sudipto Guha,et al.  Fast, small-space algorithms for approximate histogram maintenance , 2002, STOC '02.

[17]  R. Motwani,et al.  Chapter 31 – Approximate Frequency Counts over Data Streams , 2002, VLDB 2002.

[18]  P. Indyk,et al.  Chapter 30 – Comparing Data Streams Using Hamming Norms (How to Zero In) , 2002, VLDB 2002.

[19]  S. Muthukrishnan,et al.  Surfing Wavelets on Streams: One-Pass Summaries for Approximate Aggregate Queries , 2001, VLDB.

[20]  Srikanta Tirthapura,et al.  Estimating simple functions on the union of data streams , 2001, SPAA '01.

[21]  Sanjeev Khanna,et al.  Space-efficient online computation of quantile summaries , 2001, SIGMOD '01.

[22]  Jessica H. Fong,et al.  An Approximate Lp Difference Algorithm for Massive Data Streams , 1999, Discret. Math. Theor. Comput. Sci..

[23]  Cristian Estan,et al.  New directions in traffic measurement and accounting , 2001, IMW '01.

[24]  P. Indyk Stable distributions, pseudorandom generators, embeddings and data stream computation , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[25]  Phillip B. Gibbons,et al.  Tracking join and self-join sizes in limited storage , 1999, J. Comput. Syst. Sci..

[26]  Yossi Matias,et al.  DIMACS Series in Discrete Mathematicsand Theoretical Computer Science Synopsis Data Structures for Massive Data , 2007 .

[27]  Rajeev Motwani,et al.  Computing Iceberg Queries Efficiently , 1998, VLDB.

[28]  Bruce G. Lindsay,et al.  Approximate medians and other quantiles in one pass and with limited memory , 1998, SIGMOD '98.

[29]  Noga Alon,et al.  The space complexity of approximating the frequency moments , 1996, STOC '96.

[30]  Rajeev Motwani,et al.  Randomized Algorithms , 1995, SIGA.

[31]  Philippe Flajolet,et al.  Probabilistic Counting Algorithms for Data Base Applications , 1985, J. Comput. Syst. Sci..

[32]  W. B. Johnson,et al.  Extensions of Lipschitz mappings into Hilbert space , 1984 .

[33]  Philippe Flajolet,et al.  Probabilistic counting , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[34]  Setsuo Ohsuga,et al.  INTERNATIONAL CONFERENCE ON VERY LARGE DATA BASES , 1977 .