The growth of central and satellite galaxies in cosmological smoothed particle hydrodynamics simulations

We examine the accretion and merger histories of central and satellite galaxies in a smoothed particle hydrodynamics (SPH) cosmological simulation that resolves galaxies down to 7 × 10 9 M� . Most friends-of-friends haloes in the simulation have a distinct central galaxy, typically 2–5 times more massive than the most massive satellite. As expected, satellites have systematically higher assembly redshifts than central galaxies of the same baryonic mass, and satellites in more massive haloes form earlier. However, contrary to the simplest expectations, satellite galaxies continue to accrete gas and convert it to stars; the gas accretion declines steadily over a period of 0.5–1 Gyr after the satellite halo merges with a larger parent halo. Satellites in a cluster mass halo eventually begin to lose baryonic mass. Typically, satellites in our simulation are 0.1–0.2 mag bluer than in models that assume no gas accretion on to satellites after a halo merger. Since z = 1, 27 per cent of central galaxies (above 3 × 10 10 M � ) and 22 per cent of present-day satellite galaxies have merged with a smaller system above a 1:4 mass ratio; about half of the satellite mergers occurred after the galaxy became a satellite and half before. In effect, satellite galaxies can remain ‘central’ objects of halo substructures, with continuing accretion and mergers, making the transition in assembly histories and physical properties a gradual one. Implementing such a gradual transformation in semi-analytic models would improve their agreement with observed colour distributions of satellite galaxies in groups and with the observed colour dependence of galaxy clustering.

[1]  G. Kauffmann,et al.  Environmental effects on satellite galaxies: the link between concentration, size and colour profile , 2008, 0809.2283.

[2]  R. Davé,et al.  Galaxies in a simulated ΛCDM Universe – I. Cold mode and hot cores , 2008, 0809.1430.

[3]  Carlton M. Baugh,et al.  The colours of satellite galaxies in groups and clusters , 2008, 0807.0001.

[4]  P. Ocvirk,et al.  Bimodal gas accretion in the Horizon–MareNostrum galaxy formation simulation , 2008, 0803.4506.

[5]  M. Halpern,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: LIKELIHOODS AND PARAMETERS FROM THE WMAP DATA , 2008, 0803.0586.

[6]  T. Jeltema,et al.  The Hot Gas Halos of Galaxies in Groups , 2008, 0801.2570.

[7]  R. Wechsler,et al.  THE GALAXY CONTENT OF SDSS CLUSTERS AND GROUPS , 2007, 0710.3780.

[8]  U. C. A. Boulder,et al.  The Red-Sequence Luminosity Function in Galaxy Clusters since z ~ 1 , 2007, 0710.2351.

[9]  Durham,et al.  Ram pressure stripping the hot gaseous haloes of galaxies in groups and clusters , 2007, 0710.0964.

[10]  J. Newman,et al.  The DEEP2 Galaxy Redshift Survey: Color and Luminosity Dependence of Galaxy Clustering at z ∼ 1 , 2007, 0708.0004.

[11]  S. Khochfar,et al.  Adding Environmental Gas Physics to the Semianalytic Method for Galaxy Formation: Gravitational Heating , 2007, 0704.2418.

[12]  G. Kauffmann,et al.  Luminosity dependence of the spatial and velocity distributions of galaxies: semi-analytic models versus the Sloan Digital Sky Survey , 2007, astro-ph/0701218.

[13]  D. Croton,et al.  Properties of galaxy groups in the Sloan Digital Sky Survey – II. Active galactic nucleus feedback and star formation truncation , 2006 .

[14]  J. Monaghan,et al.  Fundamental differences between SPH and grid methods , 2006, astro-ph/0610051.

[15]  R. Nichol,et al.  Cosmological constraints from the SDSS luminous red galaxies , 2006, astro-ph/0608632.

[16]  M. Donahue,et al.  X-Ray Thermal Coronae of Galaxies in Hot Clusters: Ubiquity of Embedded Mini-Cooling Cores , 2006, astro-ph/0606184.

[17]  R. Davé,et al.  Accretion, feedback and galaxy bimodality: a comparison of the GalICS semi‐analytic model and cosmological SPH simulations , 2006, astro-ph/0605750.

[18]  A. Dekel,et al.  Natural downsizing in hierarchical galaxy formation , 2006, astro-ph/0605045.

[19]  S. Colombi,et al.  Baryon Dynamics, Dark Matter Substructure, and Galaxies , 2006, astro-ph/0604393.

[20]  Volker Springel,et al.  The Many lives of AGN: Cooling flows, black holes and the luminosities and colours of galaxies , 2006, astro-ph/0602065.

[21]  Oxford,et al.  Breaking the hierarchy of galaxy formation , 2005, astro-ph/0511338.

[22]  R. Davé,et al.  Galaxy Merger Statistics and Inferred Bulge-to-Disk Ratios in Cosmological SPH Simulations , 2005, astro-ph/0509474.

[23]  G. Kauffmann,et al.  The many lives of active galactic nuclei: cooling flows, black holes and the luminosities and colour , 2005, astro-ph/0508046.

[24]  A. Szalay,et al.  Galaxy Luminosity Functions to z~1 from DEEP2 and COMBO-17: Implications for Red Galaxy Formation , 2005, astro-ph/0506044.

[25]  A. Dekel,et al.  Galaxy bimodality due to cold flows and shock heating , 2004, astro-ph/0412300.

[26]  R. Davé,et al.  Theoretical Models of the Halo Occupation Distribution: Separating Central and Satellite Galaxies , 2004, astro-ph/0408564.

[27]  Y. Jing,et al.  Semianalytical Model of Galaxy Formation with High-Resolution N-Body Simulations , 2004, astro-ph/0408475.

[28]  D. Madgwick,et al.  The 2dF Galaxy Redshift Survey: Luminosity functions by density environment and galaxy type , 2004, astro-ph/0407537.

[29]  J. Bicker,et al.  Chemically consistent evolution of galaxies II. Spectrophotometric evolution from zero to high redshift , 2003, astro-ph/0309688.

[30]  Potsdam,et al.  The Dark Side of the Halo Occupation Distribution , 2003, astro-ph/0308519.

[31]  J. Binney On the origin of the galaxy luminosity function , 2003, astro-ph/0308172.

[32]  E. Bell,et al.  The Optical and Near-Infrared Properties of Galaxies. I. Luminosity and Stellar Mass Functions , 2003, astro-ph/0302543.

[33]  Y. Birnboim,et al.  Virial shocks in galactic haloes , 2003, astro-ph/0302161.

[34]  C. Baugh,et al.  The Halo Occupation Distribution and the Physics of Galaxy Formation , 2002, astro-ph/0212357.

[35]  R. Davé,et al.  How do galaxies get their gas , 2002, astro-ph/0407095.

[36]  V. Springel,et al.  Cosmological smoothed particle hydrodynamics simulations: the entropy equation , 2002 .

[37]  V. Springel,et al.  Cosmological SPH simulations: The entropy equation , 2001, astro-ph/0111016.

[38]  V. Narayanan,et al.  Color Separation of Galaxy Types in the Sloan Digital Sky Survey Imaging Data , 2001, astro-ph/0107201.

[39]  R. Davé,et al.  The Growth of Galaxies in Cosmological Simulations of Structure Formation , 2001, astro-ph/0106282.

[40]  U. Oklahoma,et al.  The Environments of a Complete Moderate-Redshift Sample of FIRST Bent-Double Radio Sources , 2001, astro-ph/0102499.

[41]  D. Weinberg,et al.  Cooling Radiation and the Lyα Luminosity of Forming Galaxies , 2000, astro-ph/0007205.

[42]  V. Springel,et al.  GADGET: a code for collisionless and gasdynamical cosmological simulations , 2000, astro-ph/0003162.

[43]  S. Kay,et al.  Parameter tests within cosmological simulations of galaxy formation , 1999, astro-ph/9908107.

[44]  R. Wechsler,et al.  The nature of high-redshift galaxies , 1998, astro-ph/0006364.

[45]  R. Davé,et al.  Parallel TreeSPH , 1997, astro-ph/9701113.

[46]  D. Weinberg,et al.  Cosmological Simulations with TreeSPH , 1995, astro-ph/9509107.

[47]  J. M. Gelb,et al.  Cold dark matter. 1: The Formation of dark halos , 1994, astro-ph/9408028.

[48]  A. Evrard,et al.  Two-Fluid Simulations of Galaxy Formation , 1994 .

[49]  C. Frenk,et al.  A recipe for galaxy formation , 1994, astro-ph/9402001.

[50]  G. Kauffmann,et al.  The formation and evolution of galaxies within merging dark matter haloes , 1993 .

[51]  Neal Katz,et al.  Galaxies and Gas in a Cold Dark Matter Universe , 1992 .

[52]  N. Katz ASPECTS OF HIERARCHICAL GALAXY FORMATION INVOLVING GAS DYNAMICS , 1992 .

[53]  Carlos S. Frenk,et al.  Galaxy formation through hierarchical clustering , 1991 .

[54]  L. Hernquist,et al.  TREESPH: A Unification of SPH with the Hierarchical Tree Method , 1989 .

[55]  G. Efstathiou,et al.  The evolution of large-scale structure in a universe dominated by cold dark matter , 1985 .

[56]  S. M. Fall,et al.  Formation and rotation of disc galaxies with haloes , 1980 .

[57]  Glenn E. Miller,et al.  The Initial mass function and stellar birthrate in the solar neighborhood , 1979 .

[58]  M. Rees,et al.  Core condensation in heavy halos: a two-stage theory for galaxy formation and clustering , 1978 .

[59]  J. Binney The physics of dissipational galaxy formation. , 1977 .

[60]  Mary E. Putman,et al.  The IGM/galaxy connection : the distribution of baryons at z=0 , 2003 .

[61]  George K. Miley,et al.  GALAXY INTERACTIONS AT LOW AND HIGH REDSHIFT , 1999 .