X-Secure T-Private Information Retrieval From MDS Coded Storage With Byzantine and Unresponsive Servers

The problem of <inline-formula> <tex-math notation="LaTeX">$X$ </tex-math></inline-formula>-secure <inline-formula> <tex-math notation="LaTeX">$T$ </tex-math></inline-formula>-private information retrieval from MDS coded storage is studied in this paper, where the user wishes to privately retrieve one out of <inline-formula> <tex-math notation="LaTeX">$K$ </tex-math></inline-formula> independent messages that are distributed over <inline-formula> <tex-math notation="LaTeX">$N$ </tex-math></inline-formula> servers according to an MDS code. It is guaranteed that any group of up to <inline-formula> <tex-math notation="LaTeX">$X$ </tex-math></inline-formula> colluding servers learn nothing about the messages and that any group of up to <inline-formula> <tex-math notation="LaTeX">$T$ </tex-math></inline-formula> colluding servers learn nothing about the identity of desired message. A lower bound of achievable rates is proved by presenting a novel scheme based on <italic>cross-subspace alignment</italic> and a successive decoding with interference cancellation strategy. For large number of messages <inline-formula> <tex-math notation="LaTeX">$(K\rightarrow \infty)$ </tex-math></inline-formula> the achieved rate, which we conjecture to be optimal, improves upon the best known rates previously reported in the literature by Raviv and Karpuk, and generalizes an achievable rate for MDS-TPIR previously found by Freij-Hollanti et al. that is also conjectured to be asymptotically optimal. The setting is then expanded to allow unresponsive and Byzantine servers. Finally, the scheme is applied to find a new lower convex hull of (download, upload) pairs of secure and private distributed matrix multiplication that generalizes, and in certain asymptotic settings strictly improves upon the best known previous results.

[1]  Michael O. Rabin,et al.  How To Exchange Secrets with Oblivious Transfer , 2005, IACR Cryptol. ePrint Arch..

[2]  Ravi Tandon,et al.  On the Upload versus Download Cost for Secure and Private Matrix Multiplication , 2019, 2019 IEEE Information Theory Workshop (ITW).

[3]  Yuval Ishai,et al.  Protecting data privacy in private information retrieval schemes , 1998, STOC '98.

[4]  Sergey Yekhanin,et al.  Locally Decodable Codes and Private Information Retrieval Schemes , 2010, Information Security and Cryptography.

[5]  Salim El Rouayheb,et al.  Private Information Retrieval From MDS Coded Data in Distributed Storage Systems , 2016, IEEE Transactions on Information Theory.

[6]  Adi Shamir,et al.  How to share a secret , 1979, CACM.

[7]  Sennur Ulukus,et al.  The Capacity of Private Information Retrieval From Coded Databases , 2016, IEEE Transactions on Information Theory.

[8]  Jörg Kliewer,et al.  Distributed and Private Coded Matrix Computation with Flexible Communication Load , 2019, 2019 IEEE International Symposium on Information Theory (ISIT).

[9]  Andrew Chi-Chih Yao,et al.  Protocols for secure computations , 1982, FOCS 1982.

[10]  Camilla Hollanti,et al.  Private Information Retrieval from Coded Databases with Colluding Servers , 2016, SIAM J. Appl. Algebra Geom..

[11]  Dimitris S. Papailiopoulos,et al.  DRACO: Byzantine-resilient Distributed Training via Redundant Gradients , 2018, ICML.

[12]  Jaekyun Moon,et al.  Election Coding for Distributed Learning: Protecting SignSGD against Byzantine Attacks , 2019, NeurIPS.

[13]  Hua Sun,et al.  The Capacity of Robust Private Information Retrieval With Colluding Databases , 2016, IEEE Transactions on Information Theory.

[14]  Syed Ali Jafar,et al.  Blind Interference Alignment , 2012, IEEE Journal of Selected Topics in Signal Processing.

[15]  Cheng Huang,et al.  On the Locality of Codeword Symbols , 2011, IEEE Transactions on Information Theory.

[16]  Jonathan Katz,et al.  On the efficiency of local decoding procedures for error-correcting codes , 2000, STOC '00.

[17]  Hua Sun,et al.  Cross Subspace Alignment and the Asymptotic Capacity of $X$ -Secure $T$ -Private Information Retrieval , 2018, IEEE Transactions on Information Theory.

[18]  Rafail Ostrovsky,et al.  Batch codes and their applications , 2004, STOC '04.

[19]  Eyal Kushilevitz,et al.  Private information retrieval , 1998, JACM.

[20]  David A. Karpuk,et al.  GASP Codes for Secure Distributed Matrix Multiplication , 2018, 2019 IEEE International Symposium on Information Theory (ISIT).

[21]  Jungwoo Lee,et al.  Private Secure Coded Computation , 2019, 2019 IEEE International Symposium on Information Theory (ISIT).

[22]  Kannan Ramchandran,et al.  One extra bit of download ensures perfectly private information retrieval , 2014, 2014 IEEE International Symposium on Information Theory.

[23]  Hua Sun,et al.  Private Information Retrieval from MDS Coded Data With Colluding Servers: Settling a Conjecture by Freij-Hollanti et al. , 2018, IEEE Transactions on Information Theory.

[24]  Aydin Sezgin,et al.  Rate-Efficiency and Straggler-Robustness through Partition in Distributed Two-Sided Secure Matrix Computation , 2018, ArXiv.

[25]  Kannan Ramchandran,et al.  Speeding Up Distributed Machine Learning Using Codes , 2015, IEEE Transactions on Information Theory.

[26]  Martín Abadi,et al.  On hiding information from an oracle , 1987, STOC '87.

[27]  Sennur Ulukus,et al.  The Capacity of Private Information Retrieval from Byzantine and Colluding Databases , 2017, IEEE Transactions on Information Theory.

[28]  David A. Karpuk,et al.  Private Polynomial Computation from Lagrange Encoding , 2019, 2019 IEEE International Symposium on Information Theory (ISIT).

[29]  Ravi Tandon,et al.  On the Capacity of Secure Distributed Matrix Multiplication , 2018, 2018 IEEE Global Communications Conference (GLOBECOM).

[30]  Camilla Hollanti,et al.  Private Information Retrieval From Coded Storage Systems With Colluding, Byzantine, and Unresponsive Servers , 2018, IEEE Transactions on Information Theory.

[31]  Alexandros G. Dimakis,et al.  Gradient Coding: Avoiding Stragglers in Distributed Learning , 2017, ICML.

[32]  Hua Sun,et al.  Blind interference alignment for private information retrieval , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).

[33]  Hua Sun,et al.  The Capacity of Private Information Retrieval , 2017, IEEE Transactions on Information Theory.