Modeling Forest Regeneration

The aim of this chapter is to review different approaches for simulating forest development in regeneration modeling. The features, shortcomings, further needs and trends of regeneration modeling are presented and discussed in the context of mechanistic, gap, statistical and nonparametric forest models. The data requirements are also described. Special emphasis is put on supplying information for modelers applying individual-tree models in uneven-aged stands.

[1]  H. Hasenauer,et al.  Using mechanistic modeling within forest ecosystem restoration , 2002 .

[2]  Timo Pukkala,et al.  A stochastic spatial regeneration model for Pinus sylvestris , 1992 .

[3]  Timo Pukkala,et al.  Simulation model for natural regeneration of Pinus sylvestris, Picea abies, Betula pendula and Betula pubescens. , 1987 .

[4]  Martin A. Riedmiller,et al.  A direct adaptive method for faster backpropagation learning: the RPROP algorithm , 1993, IEEE International Conference on Neural Networks.

[5]  H. Shugart A Theory of Forest Dynamics , 1984 .

[6]  S. Pacala,et al.  SEEDLING RECRUITMENT IN FORESTS: CALIBRATING MODELS TO PREDICT PATTERNS OF TREE SEEDLING DISPERSION' , 1994 .

[7]  Albert R. Stage,et al.  Predicting Regeneration in the Grand Fir-Cedar-Hemlock Ecosystem of the Northern Rocky Mountains , 1986, Forest Science.

[8]  Taneli Kolström,et al.  Modelling the development of an uneven‐aged stand of Picea abies , 1993 .

[9]  Annika Kangas,et al.  Estimating individual tree growth with nonparametric methods , 2003 .

[10]  Alan R. Ek,et al.  Process-based models for forest ecosystem management: current state of the art and challenges for practical implementation. , 2000, Tree physiology.

[11]  H. Shugart A Theory of Forest Dynamics , 1984 .

[12]  A. Ek Nonlinear Models for Stand Table Projection in Northern Hardwood Stands , 1974 .

[13]  Andrew P. Robinson,et al.  Development and testing of regeneration imputation models for forests in Minnesota , 1997 .

[14]  Brian D. Ripley,et al.  Spatial Statistics: Ripley/Spatial Statistics , 2005 .

[15]  D. Botkin Forest Dynamics: An Ecological Model , 1993 .

[16]  H. Sterba,et al.  A model describing natural regeneration recruitment of Norway spruce (Picea abies (L.) Karst.) in Austria , 1997 .

[17]  H. Arthur Meyer,et al.  Structure, Growth, and Drain in Balanced Uneven-Aged Forests , 1952 .

[18]  J. R. Wallis,et al.  Some ecological consequences of a computer model of forest growth , 1972 .

[19]  Changhui Peng,et al.  Growth and yield models for uneven-aged stands: past, present and future , 2000 .

[20]  A. A. Zumrawi,et al.  Regeneration imputation models for complex stands of southeastern British Columbia , 2004 .

[21]  Matti Maltamo,et al.  The K‐nearest‐neighbour method for estimating basal‐area diameter distribution , 1997 .

[22]  F. Reimoser,et al.  Impact of ungulates on forest vegetation and its dependence on the silvicultural system , 1996 .

[23]  S. Pacala,et al.  Forest models defined by field measurements : Estimation, error analysis and dynamics , 1996 .

[24]  S. Long,et al.  Free-air Carbon Dioxide Enrichment (FACE) in Global Change Research: A Review , 1999 .

[25]  Robin L. Chazdon,et al.  Sunflecks and Their Importance to Forest Understorey Plants , 1988 .

[26]  P. McCullagh,et al.  Generalized Linear Models , 1992 .

[27]  T. Kozlowski Physiological ecology of natural regeneration of harvested and disturbed forest stands: implications for forest management , 2002 .

[28]  Jerome K. Vanclay,et al.  Modelling Forest Growth and Yield: Applications to Mixed Tropical Forests , 1994 .

[29]  Growth and yield model for uneven-aged mixtures of Pinus sylvestris L. and Pinus nigra Arn. in Catalonia, north-east Spain , 2004 .

[30]  H. Hasenauer,et al.  Predicting juvenile tree height growth in uneven-aged mixed species stands in Austria , 1997 .

[31]  F. Houllier,et al.  Growth and management of mixed-species, uneven-aged forests in the French Jura : implications for economic returns and tree diversity , 1995 .

[32]  T. Spies,et al.  Light regimes beneath closed canopies and tree-fall gaps in temperate and tropical forests , 1990 .

[33]  Paul S. Johnson,et al.  Approaches to modeling natural regeneration in oak-dominated forests , 1998 .

[34]  Ross Ihaka,et al.  Gentleman R: R: A language for data analysis and graphics , 1996 .

[35]  Albert R. Stage,et al.  Most Similar Neighbor: An Improved Sampling Inference Procedure for Natural Resource Planning , 1995, Forest Science.

[36]  T. Saksa,et al.  Työkalu metsänuudistamisen laatutyöhön , 1970 .

[37]  P. McCullagh,et al.  Generalized Linear Models, 2nd Edn. , 1990 .

[38]  L. Saarenmaa,et al.  Choice of reforestation method in Finnish Lapland based on an expert system. , 1990 .

[39]  B. Bolker,et al.  Using Moment Equations to Understand Stochastically Driven Spatial Pattern Formation in Ecological Systems , 1997, Theoretical population biology.

[40]  Niklaus E. Zimmermann,et al.  Regeneration in Gap Models: Priority Issues for Studying Forest Responses to Climate Change , 2001 .

[41]  Hannu Hökkä,et al.  Models for predicting stand development in MELA System , 2002 .

[42]  Roel Bosker,et al.  Multilevel analysis : an introduction to basic and advanced multilevel modeling , 1999 .

[43]  Robert G. Haight,et al.  Optimizing any-aged management of mixed-species stands. I, Performance of a coordinate-search process , 1990 .

[44]  H. Hasenauer,et al.  Methods for assessing regeneration establishment and height growth in uneven‐aged mixed species stands , 2002 .

[45]  James A. Anderson,et al.  An Introduction To Neural Networks , 1998 .

[46]  H. Goldstein Multilevel Statistical Models , 2006 .