Mineralogy of Tagish Lake: An ungrouped type 2 carbonaceous chondrite

In this paper we describe the recovery, handling and preliminary mineralogical investigation of the Tagish Lake meteorite. Tagish Lake is a type 2 carbonaceous chondrite which bears similarities to CI1 and CM chondrite groups, but is distinct from both. Abundant phyllosilicates as well as chondrules (however sparse) and common olivine grains in the matrix preclude any other classification. The bulk density of Tagish Lake (1.67 g/cc), which is far lower than CI or CM chondrites (2.2-2.3 and 2.6-2.9 g/cc, respectively), or any other meteorite for that matter. We have identified two lithologies: a dominant carbonate-poor lithology and a less-abundant carbonate-rich lithology. The meteorite is a breccia at all scales. We have noted similarities between Tagish Lake and some clasts within the enigmatic meteorite Kaidun; possibly there are genetic relationships here worth exploring. In the paper we describe a clast of CM1 material within Tagish Lake which is very similar to a major lithology in Kaidun.

[1]  M. Zolensky,et al.  Origin of fayalitic olivine rims and lath‐shaped matrix olivine in the CV3 chondrite Allende and its dark inclusions , 1997 .

[2]  H. McSween Petrographic variations among carbonaceous chondrites of the Vigarano type , 1977 .

[3]  M. Zolensky,et al.  Mineralogy and composition of matrix and chondrule rims in carbonaceous chondrites , 1993 .

[4]  S. A. Northrop,et al.  Minerals of New Mexico , 1959 .

[5]  Michael E. Zolensky,et al.  The Tagish Lake Meteorite: A Possible Sample from a D-Type Asteroid , 2001, Science.

[6]  A. Davis,et al.  Refractory inclusions in the prototypical CM chondrite, Mighei , 1994 .

[7]  Martin R. Lee,et al.  Alteration of calcium- and aluminium-rich inclusions in the Murray (CM2) carbonaceous chondrite , 1994 .

[8]  E. Scott,et al.  Shock metamorphism of carbonaceous chondrites , 1991 .

[9]  M. Zolensky,et al.  The porosity and permeability of chondritic meteorites and interplanetary dust particles , 1997 .

[10]  S. P. Worden,et al.  Detection of Meteoroid Impacts by Optical Sensors in Earth Orbit , 1994 .

[11]  J. Goldstein Principles of Thin Film X-Ray Microanalysis , 1979 .

[12]  J. Gooding Survey of chondrule average properties in H-, L-, and LL-group chondrites - Are chondrules the same in all unequilibrated ordinary chondrites? , 1983 .

[13]  P G Brown,et al.  The fall, recovery, orbit, and composition of the Tagish Lake meteorite: a new type of carbonaceous chondrite. , 2000, Science.

[14]  M. Zolensky,et al.  Florenskyite, FeTiP, a new phosphide from the Kaidun meteorite , 2000 .

[15]  Akai Junji Mineralogical evidence of heating events in Antarctic carbonaceous chondrites, Y-86720 and Y-82162 , 1990 .

[16]  John T. Wasson,et al.  Meteorites: Classification and Properties , 1974 .

[17]  M. Zolensky,et al.  The Kaidun meteorite: Mineralogy of an unusual CM1 lithology , 1996 .

[18]  J. Akai Incompletely transformed serpentine-type phyllosilicates in the matrix of Antarctic CM chondrites , 1988 .

[19]  M. Zolensky,et al.  Mineralogy of carbonaceous chondrite clasts in HED achondrites and the Moon , 1996 .

[20]  M. Zolensky,et al.  A terrestrial origin for sulfate veins in CI1 chondrites , 2001 .

[21]  T. Miyata,et al.  Primary structure of the α-subunit of Torpedo californica (Na+ + K+)ATPase deduced from cDNA sequence , 1985, Nature.

[22]  Daniel T. Britt,et al.  The density and porosity of meteorites from the Vatican collection , 1998 .

[23]  D. Stöffler,et al.  Accretionary dust mantles in CM chondrites: Evidence for solar nebula processes , 1992 .

[24]  R. Clayton,et al.  The CR (Renazzo-type) carbonaceous chondrite group and its implications , 1993 .

[25]  M. Zolensky,et al.  CM chondrites exhibit the complete petrologic range from type 2 to 1. [Abstract only] , 1994 .

[26]  D. J. Barber,et al.  FORMATION AND ALTERATION OF CAIS IN COLD BOKKEVELD (CM2) , 1994 .

[27]  M. Zolensky,et al.  Aqueous alteration on the hydrous asteroids - Results of EQ3/6 computer simulations , 1989 .

[28]  Jon M. Friedrich,et al.  Comparison of the trace element composition of Tagish Lake with other primitive carbonaceous chondrites , 2002 .

[29]  D. Nahon Introduction to the petrology of soils and chemical weathering , 1991 .

[30]  Frans J. M. Rietmeijer,et al.  Poorly graphitized carbon as a new cosmothermometer for primitive extraterrestrial materials , 1985, Nature.

[31]  F. Shu,et al.  The Origin of Chondrules and Refractory Inclusions in Chondritic Meteorites , 2001 .

[32]  D. Mittlefehldt Geochemistry of the ungrouped carbonaceous chondrite Tagish Lake, the anomalous CM chondrite Bells, and comparison with CI and CM chondrites , 2002 .

[33]  M. Carr Atmospheric collection of debris from the Revelstoke and Allende fireballs , 1970 .

[34]  A. Brearley Phyllosilicates in the matrix of the unique carbonaceous chondrite Lewis Cliff 85332 and possible implications for the aqueous alteration of CI chondrites , 1997 .

[35]  A. Brearley Carbon-rich aggregates in type 3 ordinary chondrites: Characterization, origins, and thermal history , 1990 .

[36]  B. Wopenka,et al.  Interstellar graphite in meteorites: Isotopic compositions and structural properties of single graphite grains from Murchison , 1995 .

[37]  Michael E. Zolensky,et al.  Correlated alteration effects in CM carbonaceous chondrites , 1996 .