계층적 KLT 특징 추적기의 하드웨어 구현
暂无分享,去创建一个
본 논문에서는 계층적 KLT 특징 추적기의 하드웨어 구조를 제안한다. 계층적 KLT 특징 추적기(pyramidal Kanade-Lucas-Tomasi feature tracker)는 주로 MPU를 기반으로 구현되어 왔으나 반복연산 과정이 많아 실시간으로 처리하기 어려우므로, 실시간 수행을 위하여 FPGA(Field Programmable Gate Array)를 이용하여 구현하였다. 본 논문에서는 추출되는 특징점의 수를 일정하게 유지하기 위해 입력 영상의 밝기에 적응적으로 임계값을 설정하는 특징점 추출 알고리즘을 제안한다. 또한 계층적 KLT 추적 알고리즘을 메모리의 용량 및 대역폭의 한계를 극복하고, FPGA의 병렬처리 특성에 적합한 구조로 변환한다. 소프트웨어로 실행한 결과와의 비교를 통하여 특징점의 추출 및 추적이 유사한 양상으로 이루어짐을 검증하였고, 720×480 영상 입력에 대해 초당 30 프레임의 full frame rate로 추적이 수행됨을 확인하였다.